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CHAPTER
ONE

OVERVIEW

Note: The Agda User Manual is a work-in-progress and is still incomplete. Contributions, additions and
corrections to the Agda manual are greatly appreciated. To do so, please open a pull request or issue on the
Github Agda page.

This is the manual for the Agda programming language, its type checking, compilation and editing system
and related tools.

A description of the Agda language is given in chapter Language Reference. Guidance on how the Agda
editing and compilation system can be used can be found in chapter Tools.
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CHAPTER
TWO

GETTING STARTED

2.1 Prerequisites

You need recent versions of the following programs:
o GHC: https://www.haskell.org/ghc/
o cabal-install: https://www.haskell.org/cabal/
o Alex: https://www.haskell.org/alex/
o Happy: https://www.haskell.org/happy/
e cpphs: https://hackage.haskell.org/package/cpphs
o GNU Emagcs: http://www.gnu.org/software/emacs/
You should also make sure that programs installed by cabal-install are on your shell’s search path.

For instructions on installing a suitable version of Emacs under Windows, see Installing Emacs under Win-
dows.

* are

Non-Windows users need to ensure that the development files for the C libraries zlib* and ncurses
installed (see http://zlib.net and http://www.gnu.org/software/ncurses/). Your package manager may be

able to install these files for you. For instance, on Debian or Ubuntu it should suffice to run

apt-get install zliblg-dev libncurses5-dev

as root to get the correct files installed.

Optionally one can also install the ICU library, which is used to implement the --count-clusters flag. Under
Debian or Ubuntu it may suffice to install libicu-dev. Once the ICU library is installed one can hopefully
enable the --count-clusters flag by giving the -fenable-cluster-counting flag to cabal install.

2.1.1 Installing Emacs under Windows

A precompiled version of Emacs 24.3, with the necessary mathematical fonts, is available at http://homepage.
cs.uiowa.edu/~astump/agda/ .

2.2 Installation

There are several ways to install Agda:

o Using a released source package from Hackage
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e Using a binary package prepared for your platform
e Using the development version from the Git repository

Agda can be installed using different flags (see Installation Flags).

2.2.1 Installation from Hackage

You can install the latest released version of Agda from Hackage. Install the prerequisites and then run the
following commands:

cabal update
cabal install Agda
agda-mode setup

The last command tries to set up Emacs for use with Agda via the Emacs mode. As an alternative you can
copy the following text to your .emacs file:

(load-file (let ((coding-system-for-read 'utf-8))
(shell-command-to-string "agda-mode locate")))

It is also possible (but not necessary) to compile the Emacs mode’s files:

agda-mode compile

This can, in some cases, give a noticeable speedup.

Warning: If you reinstall the Agda mode without recompiling the Emacs Lisp files, then Emacs may
continue using the old, compiled files.

2.2.2 Prebuilt Packages and System-Specific Instructions
Arch Linux

The following prebuilt packages are available:
e Agda
e Agda standard library

Debian / Ubuntu

Prebuilt packages are available for Debian testing/unstable and Ubuntu from Karmic onwards. To install:

’apt-get install agda-mode

This should install Agda and the Emacs mode.

The standard library is available in Debian testing/unstable and Ubuntu from Lucid onwards. To install:

’apt-get install agda-stdlib

More information:
o Agda (Debian)

o Agda standard library (Debian)

4 Chapter 2. Getting Started
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o Agda (Ubuntu)
o Agda standard library (Ubuntu)
Reporting bugs:

Please report any bugs to Debian, using:

reportbug -B debian agda
reportbug -B debian agda-stdlib

Fedora

Agda is packaged in Fedora (since before Fedora 18).

yum install Agda

will pull in emacs-agda-mode and ghc-Agda-devel.

FreBSD

Packages are available from FreshPorts for Agda and Agda standard library.

NixOS

Agda is part of the Nixpkgs collection that is used by https://nixos.org/nixos. To install Agda and agda-
mode for Emacs, type:

nix-env -f "<nixpkgs>" -iA haskellPackages.Agda

If you're just interested in the library, you can also install the library without the executable. The Agda
standard library is currently not installed automatically.

0Ss X

Homebrew provides prebuilt packages for OS X. To install:

brew install agda

This should take less than a minute, and install Agda together with the Emacs mode and the standard
library.

By default, the standard library is installed in /usr/local/lib/agda/. To use the standard library, it
is convenient to add /usr/local/lib/agda/standard-library.agda-lib to ~/.agda/libraries, and specify
standard-library in ~/.agda/defaults. Note this is not performed automatically.

It is also possible to install --without-stdlib, --without-ghc, or from --HEAD. Note this will require building
Agda from source.

For more information, refer to the Homebrew documentation.

2.2. Installation 5
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2.2.3 Installation of the Development Version

After getting the development version following the instructions in the Agda wiki:
o Install the prerequisites
e In the top-level directory of the Agda source tree
— Follow the instructions for installing Agda from Hackage or

— You can try to install Agda (including a compiled Emacs mode) by running the following com-
mand:

make install

2.2.4 Installation Flags

When installing Agda the following flags can be used:
cpphs Use cpphs instead of cpp. Default: on.
debug Enable debugging features that may slow Agda down. Default: off.

flag enable-cluster-counting Enable the --count-clusters flag (see Counting Extended Grapheme Clus-
ters). Note that if enable-cluster-counting is False, then the --count-clusters flag triggers an error
message. Default: off.

2.3 Quick Guide to Editing, Type Checking and Compiling Agda Code

2.3.1 Introduction

Agda programs are commonly edited using Emacs or Atom. To edit a module (assuming you have installed
Agda and its Emacs mode (or Atom’s) properly), start the editor and open a file ending in .agda. Programs
are developed interactively, which means that one can type check code which is not yet complete: if a question
mark (?) is used as a placeholder for an expression, and the buffer is then checked, Agda will replace the
question mark with a “hole” which can be filled in later. One can also do various other things in the context
of a hole: listing the context, inferring the type of an expression, and even evaluating an open term which
mentions variables bound in the surrounding context.

The following commands are the most common (see Notation for key combinations):
C-c C-1 Load. Type-checks the contents of the file.

C-c C-, Shows the goal type, i.e. the type expected in the current hole, along with the types of locally
defined identifiers.

C-c C-. A variant of C-c C-, that also tries to infer the type of the current hole’s contents.

C-c €-SPC Give. Checks whether the term written in the current hole has the right type and, if it does,
replaces the hole with that term.

C-c C-r Refine. Checks whether the return type of the expression e in the hole matches the expected type. If
so, the hole is replaced by e { }1 ... { ¥n, where a sufficient number of new holes have been inserted.
If the hole is empty, then the refine command instead inserts a lambda or constructor (if there is a
unique type-correct choice).

C-c C-c Case split. If the cursor is positioned in a hole which denotes the right hand side of a definition,
then this command automatically performs pattern matching on variables of your choice.

6 Chapter 2. Getting Started
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C-c C-n Normalise. The system asks for a term which is then evaluated.

M-. Go to definition. Goes to the definition site of the identifier under the cursor (if known).
M-* Go back (Emacs < 25.1)

M-, Go back (Emacs 25.1)

For information related to the Emacs mode (configuration, keybindings, Unicode input, etc.) see Emacs
Mode.

2.3.2 Menus

There are two main menus in the system:
e A main menu called Agda2 which is used for global commands.
e A context sensitive menu which appears if you right-click in a hole.

The menus contain more commands than the ones listed above. See global and context sensitive commands.

2.3.3 Writing mathematical symbols in source code

Agda uses Unicode characters in source files (more specifically: the UTF-8 character encoding). Almost any
character can be used in an identifier (like ¥, o, A, or &, for example). It is therefore necessary to have spaces
between most lexical units.

Many mathematical symbols can be typed using the corresponding LaTeX command names. For instance,
you type \forall to input V. A more detailed description of how to write various characters is available.

(Note that if you try to read Agda code using another program, then you have to make sure that it uses the
right character encoding when decoding the source files.)

2.3.4 Errors

If a file does not type check Agda will complain. Often the cursor will jump to the position of the error, and
the error will (by default) be underlined. Some errors are treated a bit differently, though. If Agda cannot
see that a definition is terminating/productive it will highlight it in light salmon, and if some meta-variable
other than the goals cannot be solved the code will be highlighted in yellow (the highlighting may not appear
until after you have reloaded the file). In case of the latter kinds of errors you can still work with the file,
but Agda will (by default) refuse to import it into another module, and if your functions are not terminating
Agda may hang.

If you do not like the way errors are highlighted (if you are colour-blind, for instance), then you can tweak
the settings by typing M-x customize-group RET agda2-highlight RET in Emacs (after loading an Agda file)
and following the instructions.

2.3.5 Compiling Agda programs

To compile a module containing a function main :: I0 A for some A (where I0 can be found in the Primi-
tive.agda), use C-c C-x C-c. If the module is named A.B.C the resulting binary will be called € (located in
the project’s top-level directory, the one containing the A directory).

2.3. Quick Guide to Editing, Type Checking and Compiling Agda Code 7
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2.3.6 Batch-mode command

There is also a batch-mode command line tool: agda. To find out more about this command, use agda --help.

8 Chapter 2. Getting Started



CHAPTER

THREE

LANGUAGE REFERENCE

3.1 Abstract definitions

Definitions can be marked as abstract, for the purpose of hiding implementation details, or to speed up type-
checking of other parts. In essence, abstract definitions behave like postulates, thus, do not reduce/compute.
For instance, proofs whose content does not matter could be marked abstract, to prevent Agda from unfolding
them (which might slow down type-checking).

As a guiding principle, all the rules concerning abstract are designed to prevent the leaking of implementation
details of abstract definitions. Similar concepts of other programming language include (non-representative
sample): UCSD Pascal’s and Java’s interfaces and ML’s signatures. (Especially when abstract definitions
are used in combination with modules.)

3.1.1 Synopsis

e Declarations can be marked as abstract using the block keyword abstract.

e Outside of abstract blocks, abstract definitions do not reduce, they are treated as postulates, in par-
ticular:

— Abstract functions never match, thus, do not reduce.

— Abstract data types do not expose their constructors.

— Abstract record types do not expose their fields nor constructor.
— Other declarations cannot be abstract.

o Inside abstract blocks, abstract definitions reduce while type checking definitions, but not while check-
ing their type signatures. Otherwise, due to dependent types, one could leak implementation details
(e.g. expose reduction behavior by using propositional equality).

o Inside private type signatures in abstract blocks, abstract definitions do reduce. However, there are
some problems with this. See Issue #418.

e The reach of the abstract keyword block extends recursively to the where-blocks of a function and the
declarations inside of a record declaration, but not inside modules declared in an abstract block.

3.1.2 Examples

Integers can be implemented in various ways, e.g. as difference of two natural numbers:
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module Integer where

abstract

Z = Nat x Nat

07 : 7
0Zz=06, 0
17 : 7
1z=1, 0
7 (xy :Z) —Z
(p, n)+Z (p' , n')=(p+p'), (n+n")
Z 17 — 1
-Z (p, n)=(n, p)
=7 : (xy :Z) — Set
(p,n)=z (p*", n")=(p+n")=(p" +n)
private

postulate

+comm : Y nm— (n+m) = (m+n)

invZ : Y x — (x +Z (-Z x)) =Z 0Z
invZ (p , n) rewrite +comm (p + n) 0 | +comm p n = refl

Using abstract we do not give away the actual representation of integers, nor the implementation of the
operations. We can construct them from 0z, 17, +7Z , and -Z, but only reason about equality =z with the
provided lemma invZz.

The following property shape-of-0Z of the integer zero exposes the representation of integers as pairs. As
such, it is rejected by Agda: when checking its type signature, proj; x fails to type check since x is of
abstract type Z. Remember that the abstract definition of Z does not unfold in type signatures, even when in
an abstract block! However, if we make shape-of-Z private, unfolding of abstract definitions like 7 is enabled,
and we succeed:

-- A property about the representation of zero integers:

abstract
private
shape-of-0Z : V (x : Z) (is@Z : x =Z 0Z) — proji1 x = projz x
shape-of-0Z (p , n) refl rewrite +comm p 0 = refl

By requiring shape-of-0Z to be private to type-check, leaking of representation details is prevented.

3.1.3 Scope of abstraction

In child modules, when checking an abstract definition, the abstract definitions of the parent module are
transparent:

module M1 where
abstract
x =0

(continues on next page)
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(continued from previous page)

module M2 where
abstract
x-is-0 : x = 0
x-is-0 = refl

Thus, child modules can see into the representation choices of their parent modules. However, parent modules
cannot see like this into child modules, nor can sibling modules see through each others abstract definitions.
An exception to this is anonymous modules, which share abstract scope with their parent module, allowing
parent or sibling modules to see inside their abstract definitions.

The reach of the abstract keyword does not extend into modules:

module Parent where

abstract
module Child where
y =0
x =0 -- to avoid "useless abstract" error

y-is-0 : Child.y = 0
y-is-0 = refl

The declarations in module Child are not abstract!

3.1.4 Abstract definitions with where-blocks

Definitions in a where block of an abstract definition are abstract as well. This means, they can see through
the abstractions of their uncles:

module Where where
abstract
x : Nat

where
Xxzy : X =0
xzy = refl

Type signatures in where blocks are private, so it is fine to make type abbreviations in where blocks of abstract
definitions:

module WherePrivate where
abstract
x : Nat
X = proj; t
where
T = Nat x Nat
t T
t 0,1
p : proj; t=0
p refl

Note that if p was not private, application proj; t in its type would be ill-formed, due to the abstract
definition of T.

3.1. Abstract definitions 11
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Named where-modules do not make their declarations private, thus this example will fail if you replace x’s
where by module M where.

3.2 Built-ins

o Using the built-in types
o The unit type

e Booleans

o Natural numbers

o Machine words

o Integers

o Floats

o Lists

o Characters

o Strings

o Fquality

o Universe levels

o Sized types

o Coinduction

e 10

o Literal overloading
e Reflection

e Rewriting

o Static values

e Strictness

The Agda type checker knows about, and has special treatment for, a number of different concepts. The
most prominent is natural numbers, which has a special representation as Haskell integers and support for
fast arithmetic. The surface syntax of these concepts are not fixed, however, so in order to use the special
treatment of natural numbers (say) you define an appropriate data type and then bind that type to the
natural number concept using a BUILTIN pragma.

Some built-in types support primitive functions that have no corresponding Agda definition. These functions
are declared using the primitive keyword by giving their type signature.

3.2.1 Using the built-in types

While it is possible to define your own versions of the built-in types and bind them using BUILTIN pragmas,
it is recommended to use the definitions in the Agda.Builtin modules. These modules are installed when
you install Agda and so are always available. For instance, built-in natural numbers are defined in Agda.
Builtin.Nat. The standard library and the agda-prelude reexport the definitions from these modules.

12 Chapter 3. Language Reference
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3.2.2 The unit type

module Agda.Builtin.Unit

The unit type is bound to the built-in UNIT as follows:

record T : Set where
{-# BUILTIN UNIT T #-}

Agda needs to know about the unit type since some of the primitive operations in the refiected type checking
monad return values in the unit type.

3.2.3 Booleans

module Agda.Builtin.Bool where

Built-in booleans are bound using the BOOL, TRUE and FALSE built-ins:

data Bool : Set where

false true : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}

Note that unlike for natural numbers, you need to bind the constructors separately. The reason for this is
that Agda cannot tell which constructor should correspond to true and which to false, since you are free to
name them whatever you like.

The effect of binding the boolean type is that you can then use primitive functions returning booleans, such
as built-in NATEQUALS, and letting the GHC backend know to compile the type to Haskell Bool.

3.2.4 Natural numbers

module Agda.Builtin.Nat

Built-in natural numbers are bound using the NATURAL built-in as follows:

data Nat : Set where
zero : Nat
suc : Nat — Nat
{-# BUILTIN NATURAL Nat #-}

The names of the data type and the constructors can be chosen freely, but the shape of the datatype needs
to match the one given above (modulo the order of the constructors). Note that the constructors need not
be bound explicitly.

Binding the built-in natural numbers as above has the following effects:

e The use of natural number literals is enabled. By default the type of a natural number literal will be
Nat, but it can be overloaded to include other types as well.

e Closed natural numbers are represented as Haskell integers at compile-time.
e The compiler backends compile natural numbers to the appropriate number type in the target language.

e Enabled binding the built-in natural number functions described below.

3.2. Built-ins 13



Agda User Manual, Release 2.5.4.1

Functions on natural numbers

There are a number of built-in functions on natural numbers. These are special in that they have both
an Agda definition and a primitive implementation. The primitive implementation is used to evaluate
applications to closed terms, and the Agda definition is used otherwise. This lets you prove things about
the functions while still enjoying good performance of compile-time evaluation. The built-in functions are
the following:

_+ : Nat — Nat — Nat
zero + m=m

suc n + m = suc (n + m)

{-# BUILTIN NATPLUS + #-}

- : Nat — Nat — Nat

n - Zero =n

zero - suc m = zero
sucn-sucm=n-m

{-# BUILTIN NATMINUS - #-}

_* : Nat — Nat — Nat
zero * m = zero
sucn*m=(n*m +m

{-# BUILTIN NATTIMES * #-}

_==_: Nat — Nat — Bool

zero == zero = true
suc n == suc m=n ==
-~ = = false
{-# BUILTIN NATEQUALS == #-}

< : Nat — Nat — Bool

-~ < zero = false

zero < suc _ = true

suc h<sucm=n-<m

{-# BUILTIN NATLESS < #-}

div-helper : Nat — Nat — Nat — Nat — Nat

div-helper k m zero j =k
div-helper k m (suc n) zero = div-helper (suc k) mnm
div-helper k m (suc n) (suc j) = div-helper k m n j

{-# BUILTIN NATDIVSUCAUX div-helper #-}

mod-helper : Nat — Nat — Nat — Nat — Nat

mod-helper k m zero j =k
mod-helper k m (suc n) zero = mod-helper O m nm
mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j

{-# BUILTIN NATMODSUCAUX mod-helper #-}

The Agda definitions are checked to make sure that they really define the corresponding built-in function.
The definitions are not required to be exactly those given above, for instance, addition and multiplication
can be defined by recursion on either argument, and you can swap the arguments to the addition in the
recursive case of multiplication.

The NATDIVSUCAUX and NATMODSUCAUX are built-ins bind helper functions for defining natural number division
and modulo operations, and satisfy the properties

div n (suc m) = div-helper O m n m
mod n (suc m) mod-helper © m n m

14 Chapter 3. Language Reference
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3.2.5 Machine words

module Agda.Builtin.Word

Agda supports built-in 64-bit machine words, bound with the WORD64 built-in:

postulate Word64 : Set
{-# BUILTIN WORD64 Word64 #-}

Machine words can be converted to and from natural numbers using the following primitives:

primitive
primWord64ToNat : Word64 — Nat
primwWord64FromNat : Nat — Word64

Converting to a natural number is the trivial embedding, and converting from a natural number gives you
the remainder modulo 264, The proofs of these theorems are not primitive, but can be defined in a library
using primTrustMe.

Basic arithmetic operations can be defined on Word64 by converting to natural numbers, peforming the
corresponding operation, and then converting back. The compiler will optimise these to use 64-bit arithmetic.
For instance:

addWord : Word64 — Word64 — Word64
addWord a b = primWord64FromNat (primWord64ToNat a + primWord64ToNat b)

subWord : Word64 — Word64 — Word64
subWord a b = primWord64FromNat ((primWord64ToNat a + 18446744073709551616) - primWord64ToNat b)

These compile to primitive addition and subtraction on 64-bit words, which in the GHC backend map to
operations on Haskell 64-bit words (Data.Word.Word64).

3.2.6 Integers

module Agda.Builtin.Int

Built-in integers are bound with the INTEGER built-in to a data type with two constructors: one for positive
and one for negative numbers. The built-ins for the constructors are INTEGERPOS and INTEGERNEGSUC.

data Int : Set where

pos : Nat — Int
negsuc : Nat — Int
{-# BUILTIN INTEGER Int #-}

{-# BUILTIN INTEGERPOS pos #-}
{-# BUILTIN INTEGERNEGSUC negsuc #-}

Here negsuc n represents the integer -n - 1. Unlike for natural numbers, there is no special representation
of integers at compile-time since the overhead of using the data type compared to Haskell integers is not
that big.

Built-in integers support the following primitive operation (given a suitable binding for String ):

primitive
primShowInteger : Int — String

3.2. Built-ins 15
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3.2.7 Floats

module Agda.Builtin.Float

Floating point numbers are bound with the FLOAT built-in:

postulate Float : Set
{-# BUILTIN FLOAT Float #-}

This lets you use floating point literals. Floats are represented by the type checker as IEEE 754 binary64
double precision floats, with the restriction that there is exactly one NaN value. The following primitive
functions are available (with suitable bindings for Nat , Bool , String and Int ):

primitive

primNatToFloat : Nat — Float
primFloatPlus : Float — Float — Float
primFloatMinus : Float — Float — Float
primFloatTimes : Float — Float — Float
primFloatNegate : Float — Float
primFloatDiv : Float — Float — Float
primFloatEquality : Float — Float — Bool
primFloatlLess : Float — Float — Bool
primFloatNumericalEquality : Float — Float — Bool
primFloatNumericalless : Float — Float — Bool
primRound : Float — Int

primFloor : Float — Int
primCeiling : Float — Int

primExp : Float — Float

primLog : Float — Float

primSin : Float — Float

primCos : Float — Float

primTan : Float — Float

primASin : Float — Float

primACos : Float — Float

primATan : Float — Float
primATan2 : Float — Float — Float
primShowFloat : Float — String

The primFloatEquality primitive is intended to be used for decidable propositional equality. To enable proof
carrying comparisons while preserving consistency, the following laws apply:

nan=nan : primFloatEquality NaN NaN = true
nan=nan = refl

nan=-nan : primFloatEquality NaN (primFloatNegate NaN) = true
nan=-nan = refl

neg0=0 : primFloatEquality 0.0 -0.0 = false
neg0=0 = refl

Correspondingly, the primFloatLess can be used to provide a decidable total order, given by the following
laws:

~[<] : Float — Float — Set

x [<] y = primFloatLess x y && not (primFloatlLess y x) = true

-inf<nan : -Inf [<] NaN

(continues on next page)
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(continued from previous page)

nan<neg : NaN [<] -1.0
neg<neg® : -1.0 [<] -0.0
neg0<0 1 -0.0 [<] 0.0
O<pos 0.0 [<] 1.0
pos<Inf : 1.0 [<] Inf

-inf<nan = refl

nan<neg = refl
neg<negd = refl
negf<®@ = refl
O<pos = refl

pos<Inf = refl

For numerical comparisons, use the primFloatNumericalEquality and primFloatNumericallLess primitives.
These are implemented by the corresponding IEEE functions.

3.2.8 Lists

module Agda.Builtin.List

Built-in lists are bound using the LIST built-in:

data List {a} (A : Set a) : Set a where
[T : List A
it (x t A) (xs & List A) — List A
{-# BUILTIN LIST List #-}
infixr 5

The constructors are bound automatically when binding the type. Lists are not required to be level poly-
morphic; List : Set — Set is also accepted.

As with booleans, the effect of binding the LIST built-in is to let you use primitive functions working with
lists, such as primStringToList and primStringFromList, and letting the GHC backend know to compile the
List type to Haskell lists.

3.2.9 Characters

module Agda.Builtin.Char

The character type is bound with the CHARACTER built-in:

postulate Char : Set
{-# BUILTIN CHAR Char #-}

Binding the character type lets you use character literals. The following primitive functions are available on
characters (given suitable bindings for Bool , Nat and String ):

primitive
primIsLower : Char — Bool
primIsDigit : Char — Bool
primIsAlpha : Char — Bool
primIsSpace : Char — Bool
primIsAscii : Char — Bool

(continues on next page)
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(continued from previous page)

primIsLatinl : Char — Bool
primIsPrint : Char — Bool
primIsHexDigit : Char — Bool
primToUpper : Char — Char
primToLower : Char — Char
primCharToNat : Char — Nat

primNatToChar : Nat — Char
primShowChar : Char — String

These functions are implemented by the corresponding Haskell functions from Data.Char (ord and chr for
primCharToNat and primNatToChar). To make primNatToChar total chr is applied to the natural number modulo
0x110000.

3.2.10 Strings

module Agda.Builtin.String

The string type is bound with the STRING built-in:

postulate String : Set
{-# BUILTIN STRING String #-}

Binding the string type lets you use string literals. The following primitive functions are available on strings
(given suitable bindings for Bool , Char and List ):

postulate primStringTolList : String — List Char
postulate primStringFromList : List Char — String
postulate primStringAppend : String — String — String
postulate primStringEquality : String — String — Bool
postulate primShowString : String — String

String literals can be overloaded.

3.2.11 Equality

module Agda.Builtin.Equality

The identity type can be bound to the built-in EQUALITY as follows

infix 4 =

data = {a} {A : Set a} (x : A) : A — Set a where
refl : x = x

{-# BUILTIN EQUALITY = #-}

This lets you use proofs of type lhs = rhs in the rewrite construction.

Other variants of the identity type are also accepted as built-in:

data = {A : Set} : (x y : A) — Set where
refl : (x : A) =& x = X

The type of primTrustMe has to match the flavor of identity type.
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primTrustMe

module Agda.Builtin.TrustMe

Binding the built-in equality type also enables the primTrustMe primitive:

primitive
primTrustMe : V {a} {A : Set a} {x y : A} = x =y

As can be seen from the type, primTrustMe must be used with the utmost care to avoid inconsistencies. What
makes it different from a postulate is that if x and y are actually definitionally equal, primTrustMe reduces
to refl. One use of primTrustMe is to lift the primitive boolean equality on built-in types like String to
something that returns a proof object:

eqString : (a b : String) — Maybe (a = b)
eqString a b = if primStringEquality a b
then just primTrustMe
else nothing

With this definition eqString "foo" "foo" computes to just refl. Another use case is to erase computa-
tionally expensive equality proofs and replace them by primTrustMe:

eraseEquality : V {a} {A : Set a} {xy : A} - x=y - Xx=y
eraseEquality = primTrustMe

3.2.12 Universe levels

module Agda.Primitive

Universe levels are also declared using BUILTIN pragmas. In contrast to the Agda.Builtin modules, the Agda.
Primitive module is auto-imported and thus it is not possible to change the level built-ins. For reference
these are the bindings:

postulate
Level : Set
lzero : Level
lsuc : Level — Level
U : Level — Level — Level

{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO lzero #-}
{-# BUILTIN LEVELSUC 1lsuc #-}
{-# BUILTIN LEVELMAX U #-}

3.2.13 Sized types

module Agda.Builtin.Size

The built-ins for sized types are different from other built-ins in that the names are defined by the BUILTIN
pragma. Hence, to bind the size primitives it is enough to write:
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{-# BUILTIN SIZEUNIV SizeUniv #-} -- SizeUniv : SizelUniv

{-# BUILTIN SIZE Size #-} -- Size : SizeUniv

{-# BUILTIN SIZELT Size<  #-} -- Size< ..Size — SizelUniv
{-# BUILTIN SIZESUC 1 _ #-} o-- 1 : Size — Size

{-# BUILTIN SIZEINF o0 #-} -- 00 : Size

{-# BUILTIN SIZEMAX U _ #-} -- U : Size — Size — Size
3.2.14 Coinduction

module Agda.Builtin.Coinduction

The following built-ins are used for coinductive definitions:

postulate
oo : V¥V {a} (A :
¢ ¥ {a} {A:
b =¥V {a} {A :

Set a) — Set a
Set a} - A — o0 A
Set a} — o0 A — A

{-# BUILTIN INFINITY oo #-}

{-# BUILTIN SHARP
{-# BUILTIN FLAT

i #-}
boo#-}

See Coinduction for more information.

3.2.15 10

module Agda.Builtin

.I0

The sole purpose of binding the built-in I0 type is to let Agda check that the main function has the right

type (see Compilers).

postulate IO :
{-# BUILTIN IO IO #

Set — Set
-}

3.2.16 Literal overloading

module Agda.Builtin
module Agda.Builtin
module Agda.Builtin

.FromNat
.FromNeg
.FromString

The machinery for

overloading literals uses built-ins for the conversion functions.

3.2.17 Reflection

module Agda.Builtin

.Reflection

The reflection machinery has built-in types for representing Agda programs. See Reflection for a detailed

description.
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3.2.18 Rewriting

The experimental and totally unsafe rewriting machinery (not to be confused with the rewrite construct)
has a built-in REWRITE for the rewriting relation:

postulate » : V {a} {A : Set a} - A — A — Set a
{-# BUILTIN REWRITE » #-}

There is no Agda.Builtin module for the rewrite relation since different rewriting experiments typically want
different relations.

3.2.19 Static values

The STATIC pragma can be used to mark definitions which should be normalised before compilation. The
typical use case for this is to mark the interpreter of an embedded language as STATIC:

’{-# STATIC <Name> #-}

3.2.20 Strictness

module Agda.Builtin.Strict

There are two primitives for controlling evaluation order:

primitive
primForce : ¥V {ab} {A: Seta} {B:A — Set b} (x: A — (Vx — Bx) — Bx
primForceLemma : V {a b} {A : Set a} {B : A — Set b} (x : A) (f : ¥ x — B x) — primForce x f = f x

where = is the built-in equality . At compile-time primForce x f evaluates to f x when x is in weak head
normal form (whnf), i.e. one of the following:

e a constructor application

e a literal

e a lambda abstraction

« a type constructor application (data or record type)
« a function type

o a universe (Set _)

Similarly primForceLemma x f, which lets you reason about programs using primForce, evaluates to refl when
x is in whnf. At run-time, primForce e f is compiled (by the GHC backend) to let x = e in seq x (f x).

For example, consider the following function:

-- pow’ na=a?2"

pow’ : Nat — Nat — Nat

pow’ zero a=a

pow’ (suc n) a = pow’ n (a + a)

There is a space leak here (both for compile-time and run-time evaluation), caused by unevaluated a + a
thunks. This problem can be fixed with primForce:
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infixr 0 _$!
$!' : VYV {ab} {A:Seta} {B:A— Setb} - (Vx —Bx) - Vx—Bx
f $! x = primForce x f

- powna=a2"
pow : Nat — Nat — Nat
pow zero
pow (suc n)

= a

a
a= pown$! a+a

3.3 Coinduction

3.3.1 Coinductive Records

It is possible to define the type of infinite lists (or streams) of elements of some type A as follows,

record Stream (A : Set) : Set where
coinductive
field
hd : A
tl : Stream A

As opposed to inductive record types, we have to introduce the keyword coinductive before defining the
fields that constitute the record.

It is interesting to note that is not neccessary to give an explicit constructor to the record type Stream A.

We can as well define bisimilarity (equivalence) of a pair of Stream A as a coinductive record.

record = {A : Set} (xs : Stream A) (ys : Stream A) : Set where
coinductive
field
hd-= : hd xs = hd ys
tl-= : tl xs = tl ys

Using copatterns we can define a pair of functions on Stream such that one returns a Stream with the elements
in the even positions and the other the elements in odd positions.

even : Y {A} — Stream A — Stream A
hd (even x) = hd x
tl (even x) = even (tl (tl x))

odd : V {A} — Stream A — Stream A
odd x = even (tl x)

split : V {A } — Stream A — Stream A x Stream A
split xs = even xs , odd xs

And merge a pair of Stream by interleaving their elements.

merge : V {A} — Stream A x Stream A — Stream A
hd (merge (fst , snd)) hd fst
tl (merge (fst , snd)) = merge (snd , tl fst)

Finally, we can prove that split is the left inverse of merge.
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merge-split-id : ¥ {A} (xs : Stream A) — merge (split xs) = xs
hd-= (merge-split-id ) = refl
tl-= (merge-split-id xs) = merge-split-id (tl xs)

3.3.2 Old Coinduction

Note: This is the old way of coinduction support in Agda. You are advised to use Coinductive Records
instead.

Note: The type constructor co can be used to prove absurdity!

To use coinduction it is recommended that you import the module Coinduction from the standard library.
Coinductive types can then be defined by labelling coinductive occurrences using the delay operator oo:

data CoN : Set where
zero : CoN
suc : oo CoN — CoN

The type oo A can be seen as a suspended computation of type A. It comes with delay and force functions:

¢ 1V {a} {A:Seta} - A— o©0A
b ¥V {a} {A: Seta} - o0 A — A

Values of coinductive types can be constructed using corecursion, which does not need to terminate, but has
to be productive. As an approximation to productivity the termination checker requires that corecursive
definitions are guarded by coinductive constructors. As an example the infinite “natural number” can be
defined as follows:

inf : CoN
inf = suc (# inf)

The check for guarded corecursion is integrated with the check for size-change termination, thus allowing
interesting combinations of inductive and coinductive types. We can for instance define the type of stream
processors, along with some functions:

-- Infinite streams.

data Stream (A : Set) : Set where
(x + A) (xs : oo (Stream A)) — Stream A

-- A stream processor SP A B consumes elements of A and produces
-- elements of B. It can only consume a finite number of A’s before
-- producing a B.

data SP (A B : Set) : Set where
get : (f: A— SPAB) —SPAB
put : (b : B) (sp: oo (SPAB)) — SPAB

-- The function eat is defined by an outer corecursion into Stream B
-- and an inner recursion on SP A B.

(continues on next page)
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(continued from previous page)

eat : ¥ {AB} — SP AB — Stream A — Stream B
eat (get f) (a :x as) = eat (f a) (b as)
eat (put b sp) as =b i ¢ eat (b sp) as

-- Composition of stream processors.

o :¥Y{ABC} -SPBC—SPAB — SPAC
get f; o put X sp; = f1 X o b sp;

put x sp; ° sp: put x (# (b sp1 o spz)

sp1 o get f; = get (A x — spy o f; x)

It is also possible to define “coinductive families”. It is recommended not to use the delay constructor (#_) in a
constructor’s index expressions. The following definition of equality between coinductive “natural numbers”
is discouraged:

data ='_: CoN — CoN — Set where
zero : zero =' zero
suc : ¥ {mn} — o0 (m="n) — suc (# m) =" suc (4 n)

The recommended definition is the following one:

data = : CoN — CoN — Set where
zero : zero = zero
suc : VY {mn} - o0 (bm=5bn) — sucm= sucn

The current implementation of coinductive types comes with some limitations.

3.4 Copatterns

Consider the following record:

record Enumeration A : Set where
constructor enumeration
field
start H.\
forward : A — A
backward : A — A

This gives an interfaces that allows us to move along the elements of a data type A.

For example, we can get the “third” element of a type A:

open Enumeration

3rd : {A : Set} — Enumeration A — A
3rd e = forward e (forward e (forward e (start e)))

Or we can go back 2 positions starting from a given a:

backward-2 : {A : Set} — Enumeration A — A — A
backward-2 e a = backward (backward a)
where
open Enumeration e
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Now, we want to use these methods on natural numbers. For this, we need a record of type Enumeration
Nat. Without copatterns, we would specify all the fields in a single expression:

open Enumeration

enum-Nat : Enumeration Nat
enum-Nat = record {

start =0

; forward = suc

; backward = pred

}

where
pred : Nat — Nat
pred zero = zero
pred (suc x) = x

test; : 3rd enum-Nat = 3
test; = refl

test, : backward-2 enum-Nat 5 = 3
test, = refl

Note that if we want to use automated case-splitting and pattern matching to implement one of the fields,
we need to do so in a separate definition.

With copatterns, we can define the fields of a record as separate declarations, in the same way that we would
give different cases for a function:

open Enumeration

enum-Nat : Enumeration Nat

start enum-Nat = 0

forward enum-Nat n = suc n
backward enum-Nat zero zero
backward enum-Nat (suc n) =n

The resulting behaviour is the same in both cases:

test; : 3rd enum-Nat = 3
test; = refl

test, : backward-2 enum-Nat 5 = 3
test, refl

3.4.1 Copatterns in function definitions

In fact, we do not need to start at 8. We can allow the user to specify the starting element.

Without copatterns, we just add the extra argument to the function declaration:

open Enumeration

enum-Nat : Nat — Enumeration Nat
enum-Nat initial = record {

start = initial
; forward = suc
; backward = pred

(continues on next page)
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}

where
pred : Nat — Nat
pred zero = zero
pred (suc x) = x

test; : 3rd (enum-Nat 10) = 13
test; = refl

With copatterns, the function argument must be repeated once for each field in the record:

open Enumeration

enum-Nat : Nat — Enumeration Nat

start (enum-Nat initial) = initial
forward (enum-Nat ) n = suc n
backward (enum-Nat ) zero = zero
backward (enum-Nat ) (suc n) =n

3.4.2 Mixing patterns and co-patterns

Instead of allowing an arbitrary value, we want to limit the user to two choices: 0 or 42.

Without copatterns, we would need an auxiliary definition to choose which value to start with based on the
user-provided flag:

open Enumeration

if then else : {A : Set} — Bool - A — A — A
if true then x else _ = x
if false then elsey =y

enum-Nat : Bool — Enumeration Nat
enum-Nat ahead = record {

start = if ahead then 42 else 0
; forward = suc
; backward = pred
}
where
pred : Nat — Nat
pred zero = zero

pred (suc x) = x

With copatterns, we can do the case analysis directly by pattern matching:

open Enumeration

enum-Nat : Bool — Enumeration Nat
start (enum-Nat true) 42
start (enum-Nat false) 0
forward (enum-Nat ) n = suc n
(
(

zero

backward (enum-Nat ) zero
backward (enum-Nat ) (suc n)

[}
=)

Tip: When using copatterns to define an element of a record type, the fields of the record must be in scope.
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In the examples above, we use open Enumeration to bring the fields of the record into scope.

Consider the first example:

enum-Nat : Enumeration Nat

start enum-Nat = 0

forward enum-Nat n = suc n
backward enum-Nat zero zero
backward enum-Nat (suc n) =n

If the fields of the Enumeration record are not in scope (in particular, the start field), then Agda will not be

able to figure out what the first copattern means:

Could not parse the left-hand side start enum-Nat

Operators used in the grammar:

None

when scope checking the left-hand side start enum-Nat in the
definition of enum-Nat

The solution is to open the record before using its fields:

open Enumeration

enum-Nat : Enumeration Nat
start enum-Nat = 0

forward enum-Nat n = suc n
backward enum-Nat zero
backward enum-Nat (suc n) =n

zero

3.5 Core language

Note: This is a stub

Level Level
MetaV Metald Elims
DontCare Term
- ™ Irrelevant stuff in relevant position, but created
-- in an irrelevant context.

data Term = Var Int Elims
| Def QName Elims -- ~ @f es@, possibly a delta/iota-redex
| Con ConHead Args -- ™ @c vs@
| Lam ArgInfo (Abs Term) -- ~ Terms are beta normal. Relevance is ignored
| Lit Literal
| Pi (Dom Type) (Abs Type) -- ”~ dependent or non-dependent function space
| Sort Sort
|
|
|

3.6 Data Types

3.6.1 Simple datatypes

3.5. Core language
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Example datatypes

In the introduction we already showed the definition of the data type of natural numbers (in unary notation):

data Nat : Set where
zero : Nat
suc : Nat — Nat

We give a few more examples. First the data type of truth values:

data Bool : Set where
true : Bool
false : Bool

The True set represents the trivially true proposition:

data True : Set where
tt : True

The False set has no constructor and hence no elements. It represent the trivially false proposition:

data False : Set where

Another example is the data type of non-empty binary trees with natural numbers in the leaves:

data BinTree : Set where
leaf : Nat — BinTree
branch : BinTree — BinTree — BinTree

Finally, the data type of Brouwer ordinals:

data Ord : Set where
zeroOrd : Ord
sucOrd : Ord — Ord
1imOrd : (Nat — Ord) — Ord

General form

The general form of the definition of a simple datatype D is the following

data D : Seti where

c1 : A

Cn i An
The name D of the data type and the names cy, ..., cn of the constructors must be new w.r.t. the current
signature and context, and the types A;, .., A» must be function types ending in D, i.e. they must be of the
form
(yi : Bi) = ... —> (yn : Ba) — D

3.6.2 Parametrized datatypes

Datatypes can have parameters. They are declared after the name of the datatype but before the colon, for
example:
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data List (A : Set) : Set where
[T : List A
~: A — List A — List A

3.6.3 Indexed datatypes

In addition to parameters, datatypes can also have indices. In contrast to parameters which are required to
be the same for all constructors, indices can vary from constructor to constructor. They are declared after
the colon as function arguments to Set. For example, fixed-length vectors can be defined by indexing them
over their length of type Nat:

data Vector (A : Set) : Nat — Set where
[1 : Vector A zero
: {n : Nat} — A — Vector A n — Vector A (suc n)

Notice that the parameter A is bound once for all constructors, while the index {n : Nat} must be bound
locally in the constructor :: .

Indexed datatypes can also be used to describe predicates, for example the predicate Even : Nat — Set can
be defined as follows:

data Even : Nat — Set where
even-zero : Even zero
even-plus2 : {n : Nat} — Even n — Even (suc (suc n))

General form

The general form of the definition of a (parametrized, indexed) datatype D is the following

data D (X3 : P1) ... (X« : Pk) 2 (y1 : Q1) = ... — (yuv : Qi) — Set [J where
c, o A
Cn : An

where the types A;, ..., An are function types of the form

(Zl : Bl) — e (Zm H Bm) — D X1 ... Xk tp ... T

3.6.4 Strict positivity

When defining a datatype D, Agda poses an additional requirement on the types of the constructors of D,
namely that D may only occur strictly positively in the types of their arguments.

Concretely, for a datatype with constructors c¢; : A;, ..., cn : An, Agda checks that each A has the form

(y1 : B1) =& ... — (ym = Bn) — D

where an argument types B of the constructors is either
o non-inductive (a side condition) and does not mention D at all,

e or inductive and has the form
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(z1 + Ci) — ... — (2« ¢ Ck) — D

where D must not occur in any C'.

The strict positivity condition rules out declarations such as

data Bad : Set where
bad : (Bad — Bad) — Bad
A B C
-- A is in a negative position, B and C are 0K

since there is a negative occurrence of Bad in the type of the argument of the constructor. (Note that the
corresponding data type declaration of Bad is allowed in standard functional languages such as Haskell and
ML.).

Non strictly-positive declarations are rejected because they admit non-terminating functions.

If the positivity check is disabled, so that a similar declaration of Bad is allowed, it is possible to construct
a term of the empty type, even without recursion.

{-# OPTIONS --no-positivity-check #-}

data L : Set where

data Bad : Set where
bad : (Bad — 1) — Bad

self-app : Bad — 1
self-app (bad f) = f (bad f)

absurd : 1
absurd = self-app (bad self-app)

For more general information on termination see Termination Checking.

3.7 Foreign Function Interface

o Compiler Pragmas

o Haskell FFI
— The FOREIGN pragma
— The COMPILE pragma
— Using Haskell Types from Agda
— Using Haskell functions from Agda
— Using Agda functions from Haskell
— Polymorphic functions

— Level-polymorphic types

— Handling typeclass constraints
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o JavaScript FFI I

3.7.1 Compiler Pragmas

There are two backend-generic pragmas used for the FFI:

{-# COMPILE <Backend> <Name> <Text> #-}
{-# FOREIGN <Backend> <Text> #-}

The COMPILE pragma associates some information <Text> with a name <Name> defined in the same module,
and the FOREIGN pragma associates <Text> with the current top-level module. This information is interpreted
by the specific backend during compilation (see below). These pragmas were added in Agda 2.5.3.

3.7.2 Haskell FFI

Note: This section applies to the GHC' Backend.

The FOREIGN pragma

The GHC backend interprets FOREIGN pragmas as inline Haskell code and can contain arbitrary code (in-
cluding import statements) that will be added to the compiled module. For instance:

{-# FOREIGN GHC import Data.Maybe #-}

{-# FOREIGN GHC
data Foo = Foo | Bar Foo

countBars :: Foo -> Integer

countBars Foo = 0

countBars (Bar f) = 1 + countBars f
#-}

The COMPILE pragma

There are four forms of COMPILE annotations recognized by the GHC backend

{-# COMPILE GHC <Name> = <HaskellCode> #-}

{-# COMPILE GHC <Name> = type <HaskellType> #-}

{-# COMPILE GHC <Name> = data <HaskellData> (<HsConl> | .. | <HsConN>) #-}
{-# COMPILE GHC <Name> as <HaskellName> #-}

The first three tells the compiler how to compile a given Agda definition and the last exposes an Agda
definition under a particular Haskell name allowing Agda libraries to be used from Haskell.

Using Haskell Types from Agda

In order to use a Haskell function from Agda its type must be mapped to an Agda type. This mapping can
be configured using the type and data forms of the COMPILE pragma.
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Opaque types

Opaque Haskell types are exposed to Agda by postulating an Agda type and associating it to the Haskell
type using the type form of the COMPILE pragma:

{-# FOREIGN GHC import qualified System.IO #-}

postulate FileHandle : Set
{-# COMPILE GHC FileHandle = type System.I0.Handle #-}

This tells the compiler that the Agda type FileHandle corresponds to the Haskell type System.I0.Handle and
will enable functions using file handles to be used from Agda.

Data types

Non-opaque Haskell data types can be mapped to Agda datatypes using the data form of the COMPILED
pragma:

data Maybe (A : Set) : Set where
nothing : Maybe A
just : A — Maybe A

{-# COMPILE GHC Maybe = data Maybe (Nothing | Just) #-}

The compiler checks that the types of the Agda constructors match the types of the corresponding Haskell
constructors and that no constructors have been left out (on either side).

Built-in Types

The GHC backend compiles certain Agda built-in types to special Haskell types. The mapping between Agda
built-in types and Haskell types is as follows:

Agda Built-in | Haskell Type
NAT Integer
INTEGER Integer

STRING Data.Text.Text
CHAR Char

BOOL Bool

FLOAT Double

Warning: Haskell code manipulating Agda natural numbers as integers must take care to avoid negative
values.

Warning: Agda FLOAT values have only one logical NaN value. At runtime, there might be multiple
different NaN representations present. All such NaN values must be treated equal by FFI calls.
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Using Haskell functions from Agda

Once a suitable mapping between Haskell types and Agda types has been set up, Haskell functions whose
types map to an Agda type can be exposed to Agda code with a COMPILE pragmas:

open import Agda.Builtin.IO
open import Agda.Builtin.String
open import Agda.Builtin.Unit

{-# FOREIGN GHC
import qualified Data.Text.IO as Text
import qualified System.IO0 as IO

#-}
postulate

stdout : FileHandle

hPutStrLn : FileHandle — String — IO T
{-# COMPILE GHC stdout = I0.stdout #-}

{-# COMPILE GHC hPutStrLn = Text.hPutStrLn #-}

The compiler checks that the type of the given Haskell code matches the type of the Agda function. Note
that the COMPILE pragma only affects the runtime behaviour—at type-checking time the functions are treated
as postulates.

Warning: It is possible to give Haskell definitions to defined (non-postulate) Agda functions. In
this case the Agda definition will be used at type-checking time and the Haskell definition at runtime.
However, there are no checks to ensure that the Agda code and the Haskell code behave the same and
discrepancies may lead to undefined behaviour.

This feature can be used to let you reason about code involving calls to Haskell functions under the
assumption that you have a correct Agda model of the behaviour of the Haskell code.

Using Agda functions from Haskell

Since Agda 2.3.4 Agda functions can be exposed to Haskell code using the as form of the COMPILE pragma:

module IdAgda where

idAgda : V {A : Set} - A — A
idAgda x = x

{-# COMPILE GHC idAgda as idAgdaFromHs #-}

This tells the compiler that the Agda function idAgda should be compiled to a Haskell function called
idAgdaFromHs. Without this pragma, functions are compiled to Haskell functions with unpredictable names
and, as a result, cannot be invoked from Haskell. The type of idAgdaFromHs will be the translated type of
idAgda.

The compiled and exported function idAgdaFromHs can then be imported and invoked from Haskell like this:

- file UseIdAgda.hs
module UseIdAgda where

import MAlonzo.Code.IdAgda (idAgdaFromHs)

(continues on next page)

3.7. Foreign Function Interface 33




Agda User Manual, Release 2.5.4.1

(continued from previous page)

-- 1dAgdaFromHs :: () -> a -> a

idAgdaApplied :: a -> a
idAgdaApplied = idAgdaFromHs ()

Polymorphic functions

Agda is a monomorphic language, so polymorphic functions are modeled as functions taking types as argu-
ments. These arguments will be present in the compiled code as well, so when calling polymorphic Haskell
functions they have to be discarded explicitly. For instance,

postulate
ioReturn : {A : Set} — A — I0 A

{-# COMPILE GHC ioReturn =\ _ x -> return x #-}

In this case compiled calls to ioReturn will still have A as an argument, so the compiled definition ignores its
first argument and then calls the polymorphic Haskell return function.

Level-polymorphic types

Level-polymorphic types face a similar problem to polymorphic functions. Since Haskell does not have universe
levels the Agda type will have more arguments than the corresponding type. This can be solved by defining
a Haskell type synonym with the appropriate number of phantom arguments. For instance

data Either {a b} (A : Set a) (B : Set b) : Set (a U b) where
left : A — Either A B
right : B — Either A B

{-# FOREIGN GHC type AgdaEither a b = Either #-}
{-# COMPILE GHC Either = data AgdaEither (Left | Right) #-}

Handling typeclass constraints

There is (currently) no way to map a Haskell type with type class constraints to an Agda type. This means
that functions with class constraints cannot be used from Agda. However, this can be worked around by
wrapping class constraints in Haskell data types, and providing Haskell functions using explicit dictionary
passing.

For instance, suppose we have a simple GUI library in Haskell:

module GUILib where
class Widget w
setVisible :: Widget w => w -> Bool -> I0 ()

data Window
instance Widget Window
newWindow :: IO Window

To use this library from Agda we first define a Haskell type for widget dictionaries and map this to an Agda
type Widget:
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{-# FOREIGN GHC import GUILib #-}
{-# FOREIGN GHC data WidgetDict w = Widget w => WidgetDict #-}

postulate
Widget : Set — Set
{-# COMPILE GHC Widget = type WidgetDict #-}

We can then expose setVisible as an Agda function taking a Widget instance argument:

postulate
setVisible : {w : Set} {{_ : Widget w}} — w — Bool — IO T
{-# COMPILE GHC setVisible = |  WidgetDict -> setVisible #-}

Note that the Agda Widget argument corresponds to a WidgetDict argument on the Haskell side. When we
match on the WidgetDict constructor in the Haskell code, the packed up dictionary will become available for
the call to setVisible.

The window type and functions are mapped as expected and we also add an Agda instance packing up the
wWidget Window Haskell instance into a WidgetDict:

postulate

Window 1 Set

newWindow : IO Window

instance WidgetWindow : Widget Window
{-# COMPILE GHC Window = type Window #-}
{-# COMPILE GHC newWindow = newWindow #-}
{-# COMPILE GHC WidgetWindow = WidgetDict #-}

We can then write code like this:

openWindow : IO Window

openWindow = newWindow >>= A w —
setVisible w true >>= A\ —
return w

3.7.3 JavaScript FFI

The JavaSecript backend recognizes COMPILE pragmas of the following form:

{-# COMPILE JS <Name> = <JsCode> #-}

where <Name> is a postulate, constructor, or data type. The code for a data type is used to compile pattern
matching and should be a function taking a value of the data type and a table of functions (corresponding
to case branches) indexed by the constructor names. For instance, this is the compiled code for the List
type, compiling lists to JavaScript arrays:

data List {a} (A : Set a) : Set a where
[T : List A
¢ (x : A) (xs : List A) — List A

{-# COMPILE JS List = function(x,v) {
if (x.length < 1) {
return v["[]"]();
} else {
return v[" = "](x[0], x.slice(1));

(continues on next page)

3.7. Foreign Function Interface 35




Agda User Manual, Release 2.5.4.1

(continued from previous page)

}
}o#-}
{-# COMPILE JS []
{-# COMPILE JS

Array() #-}
function (x) { return function(y) { return Array(x).concat(y); }; } #-}

3.8 Function Definitions

3.8.1 Introduction

A function is defined by first declaring its type followed by a number of equations called clauses. Each clause
consists of the function being defined applied to a number of patterns, followed by = and a term called the
right-hand side. For example:

not : Bool — Bool
not true = false
not false = true

Functions are allowed to call themselves recursively, for example:

twice : Nat — Nat
twice zero = zero
twice (suc n) = suc (suc (twice n))

3.8.2 General form

The general form for defining a function is

f:@(xg:A) —> . — (Xn: A) — B
fpr.pn=d

fgr.qgn=c¢e

where f is a new identifier, p: and qi are patterns of type Ai, and d and e are expressions.

The declaration above gives the identifier f the type (x; : A;) — .. — (xn : An) — B and f is defined by
the defining equations. Patterns are matched from top to bottom, i.e., the first pattern that matches the
actual parameters is the one that is used.

By default, Agda checks the following properties of a function definition:
o The patterns in the left-hand side of each clause should consist only of constructors and variables.
e No variable should occur more than once on the left-hand side of a single clause.
e The patterns of all clauses should together cover all possible inputs of the function.

e The function should be terminating on all possible inputs, see Termination Checking.

3.8.3 Special patterns

In addition to constructors consisting of constructors and variables, Agda supports two special kinds of
patterns: dot patterns and absurd patterns.
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Dot patterns

A dot pattern (also called inaccessible pattern) can be used when the only type-correct value of the argument
is determined by the patterns given for the other arguments. The syntax for a dot pattern is .t.

As an example, consider the datatype Square defined as follows

data Square : Nat — Set where
sq : (m : Nat) — Square (m * m)

Suppose we want to define a function root : (n : Nat) — Square n — Nat that takes as its arguments a
number n and a proof that it is a square, and returns the square root of that number. We can do so as
follows:

root : (n : Nat) — Square n — Nat
root .(m * m) (sqm) =m

Notice that by matching on the argument of type Square n with the constructor sq : (m : Nat) — Square
(m * m), nis forced to be equal tom * m.

In general, when matching on an argument of type D i; .. in with a constructor c : (x; : A;) — . —
(Xn : An) — D j1 = jn, Agda will attempt to unify i; .. in with j; .. jo. When the unification algorithm
instantiates a variable x with value t, the corresponding argument of the function can be replaced by a dot
pattern .t. Using a dot pattern is optional, but can help readability. The following are also legal definitions
of root:

Since Agda 2.4.2.4:

root; : (n : Nat) — Square n — Nat
root;  (sqm) =m

Since Agda 2.5.2:

root; : (n : Nat) — Square n — Nat
root, n (sqm) =m

In the case of root,, n evaluates tom * m in the body of the function and is thus equivalent to

roots : (n : Nat) — Square n — Nat
root3; (sqm) =letn=m*mdinm

Absurd patterns

Absurd patterns can be used when none of the constructors for a particular argument would be valid. The
syntax for an absurd pattern is ().

As an example, if we have a datatype Even defined as follows

data Even : Nat — Set where
even-zero : Even zero
even-plus2 : {n : Nat} — Even n — Even (suc (suc n))

then we can define a function one-not-even : Even 1 — 1 by using an absurd pattern:

one-not-even : Even 1 — 1L
one-not-even ()
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Note that if the left-hand side of a clause contains an absurd pattern, its right-hand side must be omitted.

In general, when matching on an argument of type D i; .. i» with an absurd pattern, Agda will attempt for
each constructor ¢ : (x; : A;) — «. — (Xm : An) — D j; .. jn of the datatype D to unify i; .. in with j,
. jn. The absurd pattern will only be accepted if all of these unifications end in a conflict.

As-patterns

As-patterns (or @-patterns) can be used to name a pattern. The name has the same scope as normal pattern
variables (i.e. the right-hand side, where clause, and dot patterns). The name reduces to the value of the
named pattern. For example:

module _ {A : Set} (< : A — A — Bool) where
merge : List A — List A — List A
merge xs [] = xs
merge [] ys = ys
merge Xxs@(X : xs1) ys@(y : ysiy) =
if x <y then x :: merge xs; ys
else y :: merge xs ysi

As-patterns are properly supported since Agda 2.5.2.

3.8.4 Case trees

Internally, Agda represents function definitions as case trees. For example, a function definition

max : Nat — Nat — Nat

max zero n =n
max m zero =m
max (suc m) (suc n) = suc (max m n)

will be represented internally as a case tree that looks like this:

max m n = case m of
zero —n
suc m' — case n of
zero —» suc m'
suc n' — suc (max m' n')

Note that because Agda uses this representation of the function max, the clause max m zero = m does not
hold definitionally (i.e. as a reduction rule). If you would try to prove that this equation holds, you would
not be able to write refl:

data = {A : Set} (x : A) : A — Set where
refl : x = x

-- Does not work!
lemma : (m : Nat) — max m zero = m
lemma = refl

Clauses which do not hold definitionally are usually (but not always) the result of writing clauses by hand
instead of using Agda’s case split tactic. These clauses are highlighted by Emacs.

The --exact-split command-line and pragma option causes Agda to raise an error whenever a clause in a
definition by pattern matching cannot be made to hold definitionally. Specific clauses can be excluded from
this check by means of the {-# CATCHALL #-} pragma.
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For instance, the above definition of max will be rejected when using the - -exact-split flag because its second
clause does not to hold definitionally.

When using the --exact-split flag, catch-all clauses have to be marked as such, for instance:

eq : Nat — Nat — Bool

eq zero zero = true
eq (suc m) (sucn) =egmn
{-# CATCHALL #-}

eq -~ = false

The --no-exact-split command-line and pragma option can be used to override a global --exact-split in
a file, by adding a pragma {-# OPTIONS --no-exact-split #-}. This option is enabled by default.

3.9 Function Types

Function types are written (x : A) — B, or in the case of non-dependent functions simply A — B. For
instance, the type of the addition function for natural numbers is:

’Nat — Nat — Nat

and the type of the addition function for vectors is:

’(A : Set) — (n : Nat) — (u : Vec An) — (v :Vec An) — Vec An

where Set is the type of sets and Vec A n is the type of vectors with n elements of type A. Arrows between
consecutive hypotheses of the form (x : A) may also be omitted, and (x : A) (y : A) may be shortened to
(x y : A):

(A : Set) (n : Nat)(uv : Vec An) — Vec An

Functions are constructed by lambda abstractions, which can be either typed or untyped. For instance, both
expressions below have type (A : Set) — A — A (the second expression checks against other types as well):

example; = \ (A : Set)(x : A) — X
example; = \ A X — X

You can also use the Unicode symbol A (type “\lambda” in the Emacs Agda mode) instead of \\.

The application of a function f : (x : A) — B to an argument a : A is written f a and the type of this is
B[x := al.

3.9.1 Notational conventions

Function types:

prop; : ((x : A) (y : B) — C) is-the-same-as ((x : A) = (y : B) = Q)
prop, : ((xy : A) — C) is-the-same-as ((x = A)(y : A) — C)

props : (forall (x : A) — C) 1is-the-same-as ((x : A) — Q)

props : (forall x — () is-the-same-as ((x = ) — Q)

props : (forall x y — C) is-the-same-as (forall x — forall y — ()

You can also use the Unicode symbol ¥V (type “\all” in the Emacs Agda mode) instead of forall.

Functional abstraction:
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’(\x y — e) is-the-same-as (\x = (\y — e))

Functional application:

’(f ab) is-the-same-as ((f a) b)

3.10 Implicit Arguments

It is possible to omit terms that the type checker can figure out for itself, replacing them by . If the type
checker cannot infer the value of an it will report an error. For instance, for the polymorphic identity
function

id : (A: Set) - A — A

the first argument can be inferred from the type of the second argument, so we might write id _ zero for
the application of the identity function to zero.

We can even write this function application without the first argument. In that case we declare an implicit
function space:

id : {A: Set} - A — A

and then we can use the notation id zero.

Another example:

== : {A: Set} - A — A — Set
subst : {A : Set} (C : A — Set) {xy : A} - x=y —-Cx — Cy

Note how the first argument to == is left implicit. Similarly, we may leave out the implicit arguments A,
x, and y in an application of subst. To give an implicit argument explicitly, enclose in curly braces. The
following two expressions are equivalent:

x1 = subst C eq cx
x2 = subst { } C { } { } eq cx

It is worth noting that implicit arguments are also inserted at the end of an application, if it is required by
the type. For example, in the following, y1 and y2 are equivalent.

yl:a=b —Ca—Chb
yl = subst C

y2:a=b —-Ca—Chb
y2 = subst C { } { }

Implicit arguments are inserted eagerly in left-hand sides so y3 and y4 are equivalent. An exception is when
no type signature is given, in which case no implicit argument insertion takes place. Thus in the definition
of y5 there only implicit is the A argument of subst.

y3 : {xy :A} - x=y > Cx - Cy
y3 = subst C

yd : {xy : A} - x=y 5 Cx - Cy
y4 {x} {y} = subst C {_} {_}

(continues on next page)
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y5 = subst C

It is also possible to write lambda abstractions with implicit arguments. For example, given id : (A : Set)
— A — A, we can define the identity function with implicit type argument as

id’ = A {A} — id A ‘

Implicit arguments can also be referred to by name, so if we want to give the expression e explicitly for y
without giving a value for x we can write

subst C {y = e} eq cx ‘

When constructing implicit function spaces the implicit argument can be omitted, so both expressions below
are valid expressions of type {A : Set} — A — A:

z1 = X {A} x — X
722 = A X — X

The V (or forall) syntax for function types also has implicit variants:

0: (Vv {x : A} — B) is-the-same-as ({x : A} — B)
O: (Vv {x} — B) is-the-same-as ({x : } — B)
O: (¥ {xy} — B) is-the-same-as (V {x} — V {y} — B)

There are no restrictions on when a function space can be implicit. Internally, explicit and implicit function
spaces are treated in the same way. This means that there are no guarantees that implicit arguments
will be solved. When there are unsolved implicit arguments the type checker will give an error message
indicating which application contains the unsolved arguments. The reason for this liberal approach to
implicit arguments is that limiting the use of implicit argument to the cases where we guarantee that they
are solved rules out many useful cases in practice.

3.10.1 Metavariables

3.10.2 Unification

3.11 Instance Arguments

o Usage
— Defining type classes
— Declaring instances

— FExamples

o Instance resolution

Instance arguments are the Agda equivalent of Haskell type class constraints and can be used for many of the
same purposes. In Agda terms, they are implicit arguments that get solved by a special instance resolution
algorithm, rather than by the unification algorithm used for normal implicit arguments. In principle, an
instance argument is resolved, if a unique instance of the required type can be built from declared instances
and the current context.
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3.11.1 Usage

Instance arguments are enclosed in double curly braces {{ }}, e.g. {{x : T}}. Alternatively they can be
enclosed, with proper spacing, e.g. I x : T [I, in the unicode braces [ [ (U+2983 and U+2984, which can be
typed as \{{ and \}} in the Emacs mode).

For instance, given a function ==

== : {A : Set} {{eqA : Eq A}} — A — A — Bool

for some suitable type Eq, you might define

elem : {A : Set} {{eqA : Eq A}} — A — List A — Bool

elem x (y @ xs) = x ==y || elem x xs
elem x [] = false
Here the instance argument to == 1is solved by the corresponding argument to elem. Just like ordinary

implicit arguments, instance arguments can be given explicitly. The above definition is equivalent to

elem : {A : Set} {{eqA : Eq A}} — A — List A — Bool
elem {{eqA}} x (y = xs) = ==_{{eqA}} x y || elem {{egA}} x Xs

elem x [1] = false

A very useful function that exploits this is the function it which lets you apply instance resolution to solve
an arbitrary goal:

it : ¥V {a} {A : Set a} {{_ : A}} — A
it {{x}} = x

Note that instance arguments in types are always named, but the name can be :

’_== : {A : Set} — {{Eq A}} - A — A — Bool -- INVALID

’7==7 : {A : Set} {{_: Eq A}} - A — A — Bool -- VALID

Defining type classes

The type of an instance argument should have the form {I'} — C vs, where C is a postulated name, a bound
variable, or the name of a data or record type, and {I'} denotes an arbitrary number of (ordinary) implicit
arguments (see Dependent instances below for an example where I' is non-empty). Instance arguments that
do not have this form are currently accepted, but instance resolution may or may not work as described
below for such arguments.

Other than that there are no requirements on the type of an instance argument. In particular, there is no
special declaration to say that a type is a “type class”. Instead, Haskell-style type classes are usually defined
as record types. For instance,

record Monoid {a} (A : Set a) : Set a where
field
mempty : A
<> :A— A — A

In order to make the fields of the record available as functions taking instance arguments you can use the
special module application
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open Monoid {{...}} public

This will bring into scope

mempty : V {a} {A : Set a} {{_: Monoid A}} — A
<> : ¥V {a} {A : Set a} {{ : Monoid A}} — A — A — A

Superclass dependencies can be implemented using Instance fields.

See Module application and Record modules for details about how the module application is desugared. If
defined by hand, mempty would be

mempty : V {a} {A : Set a} {{_: Monoid A}} — A
mempty {{mon}} = Monoid.mempty mon

Although record types are a natural fit for Haskell-style type classes, you can use instance arguments with
data types to good effect. See the EFzamples below.

Declaring instances

As seen above, instance arguments in the context are available when solving instance arguments, but you
also need to be able to define top-level instances for concrete types. This is done using the instance keyword,
which starts a block in which each definition is marked as an instance available for instance resolution. For
example, an instance Monoid (List A) can be defined as

instance
ListMonoid : V {a} {A : Set a} — Monoid (List A)
ListMonoid = record { mempty = []; <> = ++ 1}

Or equivalently, using copatterns:

instance
ListMonoid : V {a} {A : Set a} — Monoid (List A)
mempty {{ListMonoid}} = []
<> {{ListMonoid}} XS ys = Xs ++ ys

Top-level instances must target a named type (Monoid in this case), and cannot be declared for types in the
context.

You can define local instances in let-expressions in the same way as a top-level instance. For example:

mconcat : ¥V {a} {A : Set a} {{_ : Monoid A}} — List A — A
mconcat [] = mempty
mconcat (x i Xs) = X <> mconcat xs

sum : List Nat — Nat
sum xs =
let instance
NatMonoid : Monoid Nat
NatMonoid = record { mempty = 0; <> = + }
in mconcat xs

Instances can have instance arguments themselves, which will be filled in recursively during instance resolu-
tion. For instance,
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record Eq {a} (A : Set a) : Set a where
field
= : A — A — Bool

open Eq {{...}} public

instance
eqList : ¥V {a} {A : Set a} {{ : Eq A}} — Eq (List A)
_==_ {{eqList}} [] [1 = true
_==_{{eqList}} (x = xs) (y it ys) = x ==y & xs == ys
_==_ {{eqList}} _ = false
egNat : Eq Nat
_==_{{egNat}} = natEquals
ex : Bool
ex = (1 2223 u[])==(1z2z:z][]) -- false
Note the two calls to == in the right-hand side of the second clause. The first uses the Eq A instance and

the second uses a recursive call to eqList. In the example ex, instance resolution, needing a value of type Eq
(List Nat), will try to use the eqlList instance and find that it needs an instance argument of type Eq Nat,
it will then solve that with egNat and return the solution eqList {{eqNat}}.

Note: At the moment there is no termination check on instances, so it is possible to construct non-sensical
instances like loop : V {a} {A : Set a} {{_ : Eq A}} — Eq A. To prevent looping in cases like this, the
search depth of instance search is limited, and once the maximum depth is reached, a type error will be
thrown. You can set the maximum depth using the --instance-search-depth flag.

Constructor instances

Although instance arguments are most commonly used for record types, mimicking Haskell-style type classes,
they can also be used with data types. In this case you often want the constructors to be instances, which is
achieved by declaring them inside an instance block. Typically arguments to constructors are not instance
arguments, so during instance resolution explicit arguments are treated as instance arguments. See Instance
resolution below for the details.

A simple example of a constructor that can be made an instance is the reflexivity constructor of the equality
type:

data = {a} {A : Set a} (x : A) : A — Set a where
instance refl : x = x

This allows trivial equality proofs to be inferred by instance resolution, which can make working with
functions that have preconditions less of a burden. As an example, here is how one could use this to define
a function that takes a natural number and gives back a Fin n (the type of naturals smaller than n):

data Fin : Nat — Set where
zero : VY {n} — Fin (suc n)
suc : Y {n} — Fin n — Fin (suc n)

mkFin : ¥ {n} (m : Nat) {{ : sucm-n=0}} — Finn
mkFin {zero} m {{}}
mkFin {suc n} zero = zero

(continues on next page)
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mkFin {suc n} (suc m) = suc (mkFin m)

five : Fin 6
five = mkFin 5 -- 0K

In the first clause of mkFin we use an absurd pattern to discharge the impossible assumption suc m = 0. See
the next section for another example of constructor instances.

Record fields can also be declared instances, with the effect that the corresponding projection function is
considered a top-level instance.

Examples

Proof search

Instance arguments are useful not only for Haskell-style type classes, but they can also be used to get some
limited form of proof search (which, to be fair, is also true for Haskell type classes). Consider the following
type, which models a proof that a particular element is present in a list as the index at which the element
appears:

infix 4 €
data € {A : Set} (x : A) : List A — Set where
instance
zero : ¥ {xs} — x € x i XS
suc : Y {y xs} — x € xs — x €y i XS

Here we have declared the constructors of € to be instances, which allows instance resolution to find proofs
for concrete cases. For example,

ex; : 1 +2€1 23 u4zn]]
ex; = it -- computes to suc (suc zero)

ex; : {A : Set} (xy : A) (xs : List A) — X €y 1y i X i XS
ex; X y xs = it -- suc (suc zero)

exs : {A : Set} (xy : A) (xs : List A) {{i : x € xs}} — X €y iy i XS
exs X y Xxs = it -- suc (suc i)

It will fail, however, if there are more than one solution, since instance arguments must be unique. For
example,

fail; : 1 €1 =2 1 []
fail, = it -- ambiguous: zero or suc (suc zero)

fail, : {A : Set} (x y : A) (xs : List A) {{i : x € xs}} — X €y & X I XS
fail, x y xs = it -- suc zero or suc (suc i)

Dependent instances

Consider a variant on the Eq class where the equality function produces a proof in the case the arguments
are equal:
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record Eq {a} (A : Set a) : Set a where
field
== : (xy : A) — Maybe (x =vy)

open Eq {{...}} public

A simple boolean-valued equality function is problematic for types with dependencies, like the X-type

data X {a b} (A : Set a) (B : A — Set b) : Set (a U b) where
, +(x:A) —-Bx—>XAB

since given two pairs x , y and x; , y;, the types of the second components y and y; can be completely
different and not admit an equality test. Only when x and x; are really equal can we hope to compare y and
y1. Having the equality function return a proof means that we are guaranteed that when x and x; compare
equal, they really are equal, and comparing y and y, makes sense.

An Eq instance for X can be defined as follows:

instance
eqX : ¥V {a b} {A: Set a} {B: A — Set b} {{_: Eq A}} {{_: V¥ {x} — Eq (B x)}} — Eq (X AB)
== {{egX}} (x , y) (x1 , y1) with x == x;
== {{eg¥}} (x , y) (xx , y1) | nothing = nothing
== {{egX}} (x , y) (.x, y1) | just refl with y ==y,
== {{eqX}} (x , y) (.x, y1) | just refl | nothing = nothing
== {{eqX}} (x , y) (.x, .y) | just refl | just refl = just refl

Note that the instance argument for B states that there should be an Eq instance for B x, for any x : A. The
argument x must be implicit, indicating that it needs to be inferred by unification whenever the B instance
is used. See Instance resolution below for more details.

3.11.2 Instance resolution

Given a goal that should be solved using instance resolution we proceed in the following four stages:

Verify the goal First we check that the goal is not already solved. This can happen if there are unification
constraints determining the value, or if it is of singleton record type and thus solved by eta-expansion.

Next we check that the goal type has the right shape to be solved by instance resolution. It should
be of the form {I'} — C vs, where the target type C is a variable from the context or the name of a
data or record type, and {I'} denotes a telescope of implicit arguments. If this is not the case instance
resolution fails with an error message'.

Finally we have to check that there are no unconstrained metavariables in vs. A metavariable « is
considered constrained if it appears in an argument that is determined by the type of some later
argument, or if there is an existing constraint of the form « us = C vs, where C inert (i.e. a data or
type constructor). For example, « is constrained in T o xs if T : (n : Nat) — Vec A n — Set, since
the type of the second argument of T determines the value of the first argument. The reason for this
restriction is that instance resolution risks looping in the presence of unconstrained metavariables. For
example, suppose the goal is Eq « for some metavariable «. Instance resolution would decide that the
eqList instance was applicable if setting o := List [ for a fresh metavariable 3, and then proceed to
search for an instance of Eq .

Find candidates In the second stage we compute a set of candidates. Lel-bound variables and top-level
definitions in scope are candidates if they are defined in an instance block. Lambda-bound variables,
i.e. variables bound in lambdas, function types, left-hand sides, or module parameters, are candidates

I Instance goal verification is buggy at the moment. See issue #1322.
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if they are bound as instance arguments using {{ }}. Only candidates that compute something of type
C us, where C is the target type computed in the previous stage, are considered.

Check the candidates We attempt to use each candidate in turn to build an instance of the goal type {I'}
— C vs. First we extend the current context by I'. Then, given a candidate ¢ : A — A we generate
fresh metavariables as : A for the arguments of ¢, with ordinary metavariables for implicit arguments,
and instance metavariables, solved by a recursive call to instance resolution, for explicit arguments and
instance arguments.

Next we unify A[A := as] with C vs and apply instance resolution to the instance metavariables in
as. Both unification and instance resolution have three possible outcomes: yes, no, or maybe. In case
we get a no answer from any of them, the current candidate is discarded, otherwise we return the
potential solution A {I'} — ¢ as.

Compute the result From the previous stage we get a list of potential solutions. If the list is empty we
fail with an error saying that no instance for C vs could be found (no). If there is a single solution
we use it to solve the goal (yes), and if there are multiple solutions we check if they are all equal. If
they are, we solve the goal with one of them (yes), but if they are not, we postpone instance resolution
(maybe), hoping that some of the maybes will turn into nos once we know more about the involved
metavariables.

If there are left-over instance problems at the end of type checking, the corresponding metavariables
are printed in the Emacs status buffer together with their types and source location. The candidates
that gave rise to potential solutions can be printed with the show constraints command (C-c C-=).

3.12 Irrelevance

Since version 2.2.8 Agda supports irrelevancy annotations. The general rule is that anything prepended by
a dot (.) is marked irrelevant, which means that it will only be typechecked but never evaluated.

3.12.1 Motivating example

One intended use case of irrelevance is data structures with embedded proofs, like sorted lists.

data = : Nat — Nat — Set where
zeros : {n : Nat} — zero = n
sucssuc : {mn : Nat} - m=<n — sucm=< sucn

postulate
p1 :0=1
p, :0=s1

module No-Irrelevance where
data SList (bound : Nat) : Set where
[] : SList bound
scons : (head : Nat)
— (head = bound)
— (tail : SList head)
— SList bound

Usually, when we define datatypes with embedded proofs we are forced to reason about the values of these
proofs. For example, suppose we have two lists 1; and 1, with the same elements but different proofs:
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1; : SList 1
1; = scons 0 p; []
1, : SList 1
1, = scons 0 py []

Now suppose we want to prove that 1; and 1, are equal:

11512 H 11 = 12
1=, = refl

It’s not so easy! Agda gives us an error:

p1 != p, of type 0 = 1
when checking that the expression refl has type 1; = 1,

We can’t show that 1, = 1, by refl when p; and p, are relevant. Instead, we need to reason about proofs of
0 = 1.

postulate
proof-equality : p1 = p2

Now we can prove 1; = 1, by rewriting with this equality:

11512 H 11 = 12
1:=1, rewrite proof-equality = refl

Reasoning about equality of proofs becomes annoying quickly. We would like to avoid this kind of reasoning
about proofs here - in this case we only care that a proof of head = bound exists, i.e. any proof suffices. We
can use irrelevance annotations to tell Agda we don’t care about the values of the proofs:

data SList (bound : Nat) : Set where
[1] : SList bound
scons : (head : Nat)
— . (head = bound) -- note the dot!
— (tail : SList head)
— SList bound

The effect of the irrelevant type in the signature of scons is that scons’s second argument is never inspected
after Agda has ensured that it has the right type. The type-checker ignores irrelevant arguments when
checking equality, so two lists can be equal even if they contain different proofs:

1; : SlList 1
1; = scons 0 p; []
1, : SlList 1
1, = scons 0 py []

11512 H 11 = 1.2
1=, = refl

3.12.2 Irrelevant function types

For starters, consider irrelevant non-dependent function types:
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f:.A—B

This type implies that f does not depend computationally on its argument.

What can be done to irrelevant arguments

Example 1. We can prove that two applications of an unknown irrelevant function to two different argu-
ments are equal.

-- an unknown function that does not use its second argument
postulate
f: {AB: Set} ->A -> .B -> A

-- the second argument is irrelevant for equality
proofIrr : {A : Set}{xy z : A} ->fxy=fxz
proofIrr = refl

Example 2. We can use irrelevant arguments as arguments to other irrelevant functions.

id : {AB : Set} -> (.A ->B) -> .A ->B
id g x = g X

Example 3. We can match on an irrelevant argument of an empty type with an absurd pattern ().

data L : Set where

zero-not-one : . (0 =1) — 1
zero-not-one ()

Example 4. We can match on an irrelevant record (see Record Types) as long as we only use the fields
irrelevantly.

record x (A B : Set) : Set where

constructor ,
field

fst : A

snd : B

irrElim : {ABC : Set} - .(AxB) - (.A— .B— C) — C
irrElim (a , b) f=f a b

lemma : {ABC : Set} {a a' : A} {bb' : B}
— (f + .A -> .B ->C) => irrElim (a , b) f=f a' b'
lemma f = refl

What can’t be done to irrelevant arguments

Example 1. You can’t use an irrelevant value in a non-irrelevant context.

bad-plus : Nat — .Nat — Nat
bad-plus nm=m + n

Variable m is declared irrelevant, so it cannot be used here
when checking that the expression m has type Nat
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Example 2. You can’t declare the function’s return type as irrelevant.

bad : Nat — .Nat
bad n =1

Invalid dotted expression
when checking that the expression .Nat has type Set 47

Example 3. You can’t pattern match on an irrelevant value.

badMatching : Nat — .Nat — Nat
badMatching n zero =n
badMatching n (suc m) =n

Cannot pattern match against irrelevant argument of type Nat
when checking that the pattern zero has type Nat

3.12.3 Irrelevant declarations

Postulates and functions can be marked as irrelevant by prefixing the name with a dot when the name is
declared. Irrelevant definitions can only be used as arguments of functions of an irrelevant function type .A
— B.

Examples:

.irrFunction : Nat — Nat

irrFunction zero = zero
irrFunction (suc n) = suc (suc (irrFunction n))
postulate

.assume-false : (A : Set) — A

An important example is the irrelevance axiom irrAx:

postulate
JirrAx @ ¥ {O} {A : Set J} -> .A -> A

This axiom is not provable inside Agda, but it is often very useful when working with irrelevance.

3.12.4 Irrelevant record fields

Record fields (see Record Types) can be marked as irrelevant by prefixing their name with a dot in the
definition of the record type.

Example 1. A record type containing pairs of numbers satisfying certain properties.

record InterestingNumbers : Set where

field
n : Nat
m : Nat

.propl : n+m=n*m+ 2
.prop2 : suc m =

A
=}

Example 2. For any type A, we can define a squashed’ version ‘““Squash A‘ where all elements are equal.
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record Squash (A : Set) : Set where
constructor squash
field
.proof : A

open Squash

.unsquash : V {A} — Squash A — A
unsquash x = proof x

Example 3. We can define the subset of x : A satisfying P x with irrelevant membership certificates.

record Subset (A : Set) (P : A -> Set) : Set where
constructor _#
field
elem A
.certificate : P elem

.certificate : {A : Set}{P : A -> Set} -> (x : Subset A P) -> P (Subset.elem x)
certificate (a # p) = irrAx p

3.12.5 Dependent irrelevant function types

Just like non-dependent functions, we can also make dependent functions irrelevant. The basic syntax is as
in the following examples:

r .(xy A — B

t .{xyz:A —- B

: .(xs {ys zs} : A) -+ B
:Vx .y — B

: ¥V x .{y} {z} .v —+ B

f
f
f
f
f
f @ . {{x : A}} — B

The declaration

: .(x = A) — BI[x]
f x = t[x]

requires that x is irrelevant both in t[x] and in B[x]. This is possible if, for instance, B[x] = C x, with C :
A — Set.

Dependent irrelevance allows us to define the eliminator for the Squash type:

elim-Squash : {A : Set} (P : Squash A — Set)
(ih : .(a : A) — P (squash a)) —
(a- : Squash A) — P a-
elim-Squash P ih (squash a) = ih a

Note that this would not type-check with (ih : (a : A) — P (squash a)).

3.12.6 Irrelevant instance arguments

Contrary to normal instance arguments, irrelevant instance arguments (see Instance Arguments) are not
required to have a unique solution.
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record T : Set where
instance constructor tt

NonZero : Nat — Set

NonZero zero =1

NonZero (suc ) =T

pred” : (n : Nat) .{{_ : NonZero n}} — Nat
pred” zero {{}}

pred” (suc n) =n

find-nonzero : (n : Nat) {{x y : NonZero n}} — Nat
find-nonzero n = pred’ n

3.13 Lambda Abstraction

3.13.1 Pattern matching lambda

Anonymous pattern matching functions can be defined using the syntax:

’\ {pll .. pln -> el ; .. ; pml .. pmn -> em }

(where, as usual, \ and -> can be replaced by A and —). Internally this is translated into a function definition
of the following form:

.extlam pl1 .. pln = el

.extlam pml .. pmn = em

This means that anonymous pattern matching functions are generative. For instance, refl will not be
accepted as an inhabitant of the type

(A { true — true ; false — false }) ==
(A { true — true ; false — false })

because this is equivalent to extlaml = extlam2 for some distinct fresh names extlaml and extlam2. Currently
the where and with constructions are not allowed in (the top-level clauses of) anonymous pattern matching
functions.

Examples:

and : Bool — Bool — Bool
and = A { true x — x ; false — false }

xor : Bool — Bool — Bool

xor = X\ { true true — false
; false false — false
; _ — true

}

fst : {A: Set} {B: A — Set} - X AB — A
fst=A{(a, b)) —a}

snd : {A: Set} {B: A — Set} (p: X AB) — B (fst p)
snd=X{(a,b) —-b?}
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3.14 Local Definitions: let and where

There are two ways of declaring local definitions in Agda:
¢ let-expressions

« where-blocks

3.14.1 let-expressions

A let-expression defines an abbreviation. In other words, the expression that we define in a let-expression
can neither be recursive nor defined by pattern matching.

Example:

f ¢ Nat
f = let h : Nat — Nat
h m = suc (suc m)
in h zero + h (suc zero)

let-expressions have the general form

let f1 @ Ajp — w — Aln — Ay
fi X3 w Xn = €1

fo : Am] — w — Ank — An
fn X1 w Xk = €n

’

in e

where previous definitions are in scope in later definitions. The type signatures can be left out if Agda can
infer them. After type-checking, the meaning of this is simply the substitution e’[f; = A Xx; . xn — €;
w; Foo1= A Xy w Xk — en]. Since Agda substitutes away let-bindings, they do not show up in terms Agda
prints, nor in the goal display in interactive mode.

3.14.2 where-blocks

where-blocks are much more powerful than let-expressions, as they support arbitrary local definitions. A
where can be attached to any function clause.

where-blocks have the general form

clause
where
decls

or

clause
module M where
decls

A simple instance is
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g ps=¢e
where
fiA — . — A — A

f pi1 = p1n= €1

f Pm1 w Pmn= €m

Here, the pi; are patterns of the corresponding types and e: is an expression that can contain occurrences
of f. Functions defined with a where-expression must follow the rules for general definitions by pattern
matching.

Example:

reverse : {A : Set} — List A — List A
reverse {A} xs = rev-append xs []

where
rev-append : List A — List A — List A
rev-append [] ys = ys

rev-append (x : Xxs) ys = rev-append xs (X : ys)

Variable scope

The pattern variables of the parent clause of the where-block are in scope; in the previous example, these
are A and xs. The variables bound by the type signature of the parent clause are not in scope. This is why
we added the hidden binder {A}.

Scope of the local declarations

The where-definitions are not visible outside of the clause that owns these definitions (the parent clause).
If the where-block is given a name (form module M where), then the definitions are available as qualified by
M, since module M is visible even outside of the parent clause. The special form of an anonymous module
(module _ where) makes the definitions visible outside of the parent clause without qualification.

If the parent function of a named where-block (form module M where) is private, then module M is also
private. However, the declarations inside M are not private unless declared so explicitly. Thus, the following
example scope checks fine:

module Parent; where
private
parent = local
module Private where
local = Set
module Public = Private

test; = Parent;.Public.local

Likewise, a private declaration for a parent function does not affect the privacy of local functions defined
under a module _ where-block:

module Parent, where
private
parent = local
module _ where

(continues on next page)
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(continued from previous page)

local = Set

test, = Parent;.local

They can be declared private explicitly, though:

module Parents where
parent = local
module _ where
private
local = Set

Now, Parents.local is not in scope.

A private declaration for the parent of an ordinary where-block has no effect on the local definitions, of
course. They are not even in scope.

3.14.3 Proving properties

Sometimes one needs to refer to local definitions in proofs about the parent function. In this case, the module
- where variant is preferable.

reverse : {A : Set} — List A — List A
reverse {A} xs = rev-append xs []
module Rev where
rev-append : List A — List A — List A
rev-append [] ys = ys
rev-append (x :: xs) ys = rev-append xs (x :: ys)

This gives us access to the local function as

Rev.rev-append : {A : Set} (xs : List A) — List A — List A — List A

Alternatively, we can define local functions as private to the module we are working in; hence, they will not
be visible in any module that imports this module but it will allow us to prove some properties about them.

private
rev-append : {A : Set} — List A — List A — List A
rev-append [] ys = ys

rev-append (x : xs) ys = rev-append xs (X i ys)

reverse' : {A : Set} — List A — List A
reverse' xs = rev-append xs []

3.14.4 More Examples (for Beginners)

Using a let-expression:

tw-map : {A : Set} — List A — List (List A)
tw-map {A} xs = let twice : List A — List A
twice xs = XS ++ XS
in map (\ x — twice [ x 1) xs

Same definition but with less type information:
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tw-map' : {A : Set} — List A — List (List A)
tw-map' {A} xs = let twice :
twice xs = xS ++ Xxs
in map (\ x — twice [ x 1) xs

Same definition but with a where-expression

tw-map'' : {A : Set} — List A — List (List A)
tw-map'' {A} xs = map (\ x — twice [ x ]) xs
where twice : List A — List A
twice XS = XS ++ XS

Even less type information using let:

g : Nat — List Nat

g zero = [ zero ]

g (suc n) = let sing = [ suc n ]
in sing ++ g n

Same definition using where:

g' : Nat — List Nat

g' zero = [ zero ]

g' (suc n) = sing ++ g' n
where sing = [ suc n ]

More than one definition in a let:

h : Nat — Nat
h n = let add2 : Nat
add2 = suc (suc n)

twice : Nat — Nat
twice m =m *m

in twice add2

More than one definition in a where:

fibfact : Nat — Nat
fibfact n = fib n + fact n
where fib : Nat — Nat
fib zero = suc zero
fib (suc zero) = suc zero
fib (suc (suc n)) = fib (suc n) + fib n

fact : Nat — Nat
fact zero = suc zero
fact (suc n) = suc n * fact n

Combining let and where:

k : Nat — Nat
k n = let aux : Nat — Nat
aux m = pred (h m) + fibfact m
in aux (pred n)
where pred : Nat — Nat

(continues on next page)
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pred zero = zero
pred (suc m) =m

3.15 Lexical Structure

Agda code is written in UTF-8 encoded plain text files with the extension .agda. Most unicode characters
can be used in identifiers and whitespace is important, see Names and Layout below.

3.15.1 Tokens

Keywords and special symbols

Most non-whitespace unicode can be used as part of an Agda name, but there are two kinds of exceptions:
special symbols Characters with special meaning that cannot appear at all in a name. These are .;{}()@".

keywords Reserved words that cannot appear as a name part , but can appear in a name together with
other characters.

=]l ->=:?2\A ..... abstract codata coinductive constructor data do eta-equality field forall
hiding import in inductive infix infix1l infixr instance let macro module mutual no-eta-equality
open overlap pattern postulate primitive private public quote quoteContext quoteGoal quoteTerm
record renaming rewrite Set syntax tactic unquote wunquoteDecl unquoteDef using where with

The Set keyword can appear with a number suffix, optionally subscripted (see Universe Levels). For
instance Set42 and Sety, are both keywords.

Names

A qualified name is a non-empty sequence of names separated by dots (.). A name is an alternating sequence
of name parts and underscores (_), containing at least one name part. A name part is a non-empty sequence
of unicode characters, excluding whitespace, , and special symbols . A name part cannot be one of the
keywords above, and cannot start with a single quote, ' (which are used for character literals, see Literals
below).

Examples
e Valid: data?, ::, if then else , Ob, + € , x=y
e Invalid: data ?, foo bar, ,a;b, [ .. ]

The underscores in a name indicate where the arguments go when the name is used as an operator. For
instance, the application + 1 2 can be written as 1 + 2. See Mizfiz Operators for more information. Since
most sequences of characters are valid names, whitespace is more important than in other languages. In the
example above the whitespace around + is required, since 1+2 is a valid name.

Qualified names are used to refer to entities defined in other modules. For instance Prelude.Bool.true refers
to the name true defined in the module Prelude.Bool. See Module System for more information.

Literals

There are four types of literal values: integers, floats, characters, and strings. See Built-ins for the corre-
sponding types, and Literal Overloading for how to support literals for user-defined types.
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Integers Integer values in decimal or hexadecimal (prefixed by 0x) notation. Non-negative numbers map
by default to built-in natural numbers, but can be overloaded. Negative numbers have no default
interpretation and can only be used through overloading.

Examples: 123, 0xFOF080, -42, -0xF

Floats Floating point numbers in the standard notation (with square brackets denoting optional parts):

float := [-] decimal . decimal [exponent]
| [-1 decimal exponent
exponent ::= (e | E) [+ | -] decimal

These map to built-in floats and cannot be overloaded.
Examples: 1.0, -5.0e+12, 1.01e-16, 4.2E9, 50e3.

Characters Character literals are enclosed in single quotes ('). They can be a single (unicode) character,
other than ' or \, or an escaped character. Escaped characters start with a backslash \ followed by an
escape code. Escape codes are natural numbers in decimal or hexadecimal (prefixed by x) between 0
and 0x10ffff (1114111), or one of the following special escape codes:

Code | ASCII | Code | ASCIlI | Code | ASCII | Code | ASCII
a 7 b 8 t 9 n 10
v 11 f 12 \ \ ' '

" " NUL 0 SOH 1 STX 2
ETX 3 EOT 4 ENQ 5 ACK 6
BEL 7 BS 8 HT 9 LF 10
VT 11 FF 12 CR 13 SO 14
SI 15 DLE 16 DC1 17 DC2 18
DC3 19 DC4 20 NAK 21 SYN 22
ETB 23 CAN 24 EM 25 SUB 26
ESC 27 FS 28 GS 29 RS 30
us 31 SP 32 DEL 127

Character literals map to the built-in character type and cannot be overloaded.
Examples: 'A', 'V', '\x2200", '\ESC', '\32", '\n', "\'*, '"".

Strings String literals are sequences of, possibly escaped, characters enclosed in double quotes ". They
follow the same rules as character literals except that double quotes " need to be escaped rather than
single quotes '. String literals map to the built-in string type by default, but can be overloaded.

Example: "Mpuset \"mup\"\n".

Holes

Holes are an integral part of the interactive development supported by the Emacs mode. Any text enclosed
in {! and '} is a hole and may contain nested holes. A hole with no contents can be written ?. There are a
number of Emacs commands that operate on the contents of a hole. The type checker ignores the contents
of a hole and treats it as an unknown (see Implicit Arguments).

Example: {! f {Ix!} 5 !}
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Comments

Single-line comments are written with a double dash - - followed by arbitrary text. Multi-line comments are
enclosed in {- and -} and can be nested. Comments cannot appear in string literals .

Example:

{- Here is a {- nested -}
comment -}

s ¢ String --line comment {-
s = "{- not a comment -}"
Pragmas

Pragmas are special comments enclosed in {-# and #-} that have special meaning to the system. See Pragmas
for a full list of pragmas.

3.15.2 Layout

Agda is layout sensitive using similar rules as Haskell, with the exception that layout is mandatory: you
cannot use explicit {, } and ; to avoid it.

A layout block contains a sequence of statements and is started by one of the layout keywords:

abstract do field instance let macro mutual postulate primitive private where

The first token after the layout keyword decides the indentation of the block. Any token indented more than
this is part of the previous statement, a token at the same level starts a new statement, and a token indented
less lies outside the block.

data Nat : Set where -- starts a layout block
-- comments are not tokens

zero : Nat -- statement 1
suc : Nat — -- statement 2
Nat -- also statement 2

one : Nat -- outside the layout block
one = suc zero

Note that the indentation of the layout keyword does not matter.

An Agda file contains one top-level layout block, with the special rule that the contents of the top-level
module need not be indented.

module Example where
NotIndented : Set;
NotIndented = Set

3.15.3 Literate Agda

Agda supports literate programming where everything in a file is a comment unless enclosed in \begin{code},
\end{code}. Literate Agda files have the extension .lagda instead of .agda. The main use case for literate
Agda is to generate LaTeX documents from Agda code. See Generating LaTeX for more information.
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\documentclass{article}
% some preamble stuff
\begin{document}
Introduction usually goes here
\begin{code}
module MyPaper where
open import Prelude
five : Nat
five = 2 + 3
\end{code}
Now, conclusions!
\end{document}

3.16 Literal Overloading

3.16.1 Natural numbers

By default natural number literals are mapped to the built-in natural number type. This can be changed with
the FROMNAT built-in, which binds to a function accepting a natural number:

{-# BUILTIN FROMNAT fromNat #-}

This causes natural number literals n to be desugared to fromNat n. Note that the desugaring happens before
implicit argument are inserted so fromNat can have any number of implicit or instance arguments. This can
be exploited to support overloaded literals by defining a type class containing fromNat:

module number-simple where

record Number {a} (A : Set a) : Set a where
field fromNat : Nat — A

open Number {{...}} public

{-# BUILTIN FROMNAT fromNat #-}

This definition requires that any natural number can be mapped into the given type, so it won’t work for
types like Fin n. This can be solved by refining the Number class with an additional constraint:

record Number {a} (A : Set a) : Set (lsuc a) where
field
Constraint : Nat — Set a
fromNat : (n : Nat) {{_ : Constraint n}} — A

open Number {{...}} public using (fromNat)

{-# BUILTIN FROMNAT fromNat #-}

This is the definition used in Agda.Builtin.FromNat. A Number instance for Nat is simply this:

instance
NumNat : Number Nat
NumNat .Number.Constraint _
NumNat .Number.fromNat m

n
3 4
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A Number instance for Fin n can be defined as follows:

= (mn Nat) — Set
zero =n =T

suc m =< zero =1

SUC M <suCn=msn

fromNs : Ymn — m=n — Fin (suc n)

fromN= zero _ = zero

fromNs (suc ) zero ()

fromNs (suc m) (suc n) p = suc (fromNs m n p)
instance

NumFin : V {n} — Number (Fin (suc n))

NumFin {n} .Number.Constraint m =m=n

NumFin {n} .Number.fromNat m {{m=n}} = fromNs m n m=n
test : Fin 5
test = 3

It is important that the constraint for literals is trivial. Here, 3 = 5 evaluates to T whose inhabitant is found
by unification.

Using predefined function from the standard library and instance NumNat, the NumFin instance can be simply:

open import Data.Fin using (Fin; # )
open import Data.Nat using (suc; =? )
open import Relation.Nullary.Decidable using (True)

instance
NumFin : ¥ {n} — Number (Fin n)
NumFin {n} .Number.Constraint m
NumFin {n} .Number.fromNat m {{m<n}}

True (suc m =<? n)
# m {m<n = m<n}

3.16.2 Negative numbers

Negative integer literals have no default mapping and can only be used through the FROMNEG built-in. Binding
this to a function fromNeg causes negative integer literals -n to be desugared to fromNeg n, where n is a built-in
natural number. From Agda.Builtin.FromNeg:

record Negative {a} (A : Set a) : Set (lsuc a) where
field
Constraint : Nat — Set a
fromNeg : (n : Nat) {{ : Constraint n}} — A

open Negative {{...}} public using (fromNeg)
{-# BUILTIN FROMNEG fromNeg #-}

3.16.3 Strings

String literals are overloaded with the FROMSTRING built-in, which works just like FROMNAT. If it is not bound
string literals map to built-in strings. From Agda.Builtin.FromString:
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record IsString {a} (A : Set a) : Set (lsuc a) where
field
Constraint : String — Set a
fromString : (s : String) {{_: Constraint s}} — A

open IsString {{...}} public using (fromString)
{-# BUILTIN FROMSTRING fromString #-}

3.16.4 Restrictions

Currently only integer and string literals can be overloaded.

Overloading does not work in patterns yet.

3.17 Mixfix Operators

A name containing one or more name parts and one or more _ can be used as an operator where the
arguments go in place of the . For instance, an application of the name if then else to arguments x, vy,
and z can be written either as a normal application if then else x y z or as an operator application if x
then y else z.

Examples:

~and_ : Bool — Bool — Bool
true and x = x
false and = false

if then else : {A : Set} — Bool - A — A — A
if true then x else y = x
if false then x else y =y

= : Bool — Bool — Bool
true = b=>b
false = = true

3.17.1 Precedence
Consider the expression true and false = false. Depending on which of and and = has more precedence,
it can either be read as (false and true) = false = true, or as false and (true = false) = true.

Each operator is associated to a precedence, which is an integer (can be negative!). The default precedence
for an operator is 20.

If we give and more precedence than = | then we will get the first result:

infix 30 and
-- infix 20 - (default)

p-and : {xy z : Bool} - xandy=2z = (xandy) =z
p-and = refl
e-and : false and true = false = true

e-and = refl
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But, if we declare a new operator and’ and give it less precedence than = , then we will get the second
result:

~and’_ : Bool — Bool — Bool
~and’ = and_

infix 15 _and’_

-- infix 20 - (default)

p-- : {xyz:Bool} - xand’"y=2z = xand' (y = z)
p-=- = refl

e--» : false and’ true - false = false

e-=> = refl

3.17.2 Associativity

Consider the expression true - false - false. Depending on whether = is associates to the left or to the
right, it can be read as (false = true) - false = false, or false = (true = false) = true, respectively.

If we declare an operator = as infixr, it will associate to the right:

infixr 20 =

p-right : {x y z : Bool} =+ x=y =2z = X = (y = 2)
p-right = refl

e-right : false = true - false = true
e-right = refl

’

If we declare an operator =’ as infix1, it will associate to the left:

infixl 20 ='_
_='_: Bool — Bool — Bool
p-left : {x y z : Bool} — x="y="2z = (x="y)="12

p-left = refl

e-left : false =’ true =’ false = false
refl

1]
v
—
(0]
—
~+
n

3.17.3 Ambiguity and Scope

If you have not yet declared the fixity of an operator, Agda will complain if you try to use ambiguously:

e-ambiguous : Bool
e-ambiguous = true = true = true

Could not parse the application true = true = true
Operators used in the grammar:
- (infix operator, level 20)

Fixity declarations may appear anywhere in a module that other declarations may appear. They then apply
to the entire scope in which they appear (i.e. before and after, but not outside).
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3.18 Module System

3.18.1 Module application
3.18.2 Anonymous modules

3.18.3 Basics

First let us introduce some terminology. A definition is a syntactic construction defining an entity such as a
function or a datatype. A name is a string used to identify definitions. The same definition can have many
names and at different points in the program it will have different names. It may also be the case that two
definitions have the same name. In this case there will be an error if the name is used.

The main purpose of the module system is to structure the way names are used in a program. This is done
by organising the program in an hierarchical structure of modules where each module contains a number of
definitions and submodules. For instance,

module Main where

module B where
f : Nat — Nat
fn=sucn

g : Nat — Nat — Nat
gnm=m

Note that we use indentation to indicate which definitions are part of a module. In the example f is in the
module Main.B and g is in Main. How to refer to a particular definition is determined by where it is located
in the module hierarchy. Definitions from an enclosing module are referred to by their given names as seen
in the type of f above. To access a definition from outside its defining module a qualified name has to be
used.

module Main, where

module B where
f : Nat — Nat
fn=sucn

ff : Nat — Nat
ff x = B.f (B.f x)

To be able to use the short names for definitions in a module the module has to be opened.

module Mains where
module B where
f : Nat — Nat
fn=sucn

open B

ff : Nat — Nat
ff x =f (f x)

If A.gqname refers to a definition d then after open A, gname will also refer to d. Note that qname can itself
be a qualified name. Opening a module only introduces new names for a definition, it never removes the old
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names. The policy is to allow the introduction of ambiguous names, but give an error if an ambiguous name
is used.

Modules can also be opened within a local scope by putting the open B within a where clause:

ff; : Nat — Nat
ff; x = f (f x) where open B

3.18.4 Private definitions

To make a definition inaccessible outside its defining module it can be declared private. A private definition
is treated as a normal definition inside the module that defines it, but outside the module the definition has
no name. In a dependently type setting there are some problems with private definitions—since the type
checker performs computations, private names might show up in goals and error messages. Consider the
following (contrived) example

module Main, where
module A where

private
IsZero' : Nat — Set
IsZero' zero =T
IsZero' (suc n) =1

IsZero : Nat — Set
IsZero n = IsZero’' n

open A
prf : (n : Nat) — IsZero n
prf n={/}

The type of the goal 70 is IsZero n which normalises to IsZero’ n. The question is how to display this normal
form to the user. At the point of 70 there is no name for IsZero’. One option could be try to fold the term
and print IsZero n. This is a very hard problem in general, so rather than trying to do this we make it
clear to the user that IsZero’ is something that is not in scope and print the goal as .Main.A.IsZero’ n. The
leading dot indicates that the entity is not in scope. The same technique is used for definitions that only
have ambiguous names.

In effect using private definitions means that from the user’s perspective we do not have subject reduction.
This is just an illusion, however—the type checker has full access to all definitions.

3.18.5 Name modifiers

An alternative to making definitions private is to exert finer control over what names are introduced when
opening a module. This is done by qualifying an open statement with one or more of the modifiers using,
hiding, or renaming. You can combine both using and hiding with renaming, but not with each other. The
effect of

open A using (xs) renaming (ys to zs)

is to introduce the names xs and zs where xs refers to the same definition as A.xs and zs refers to A.ys. Note
that if xs and ys overlap there will be two names introduced for the same definition. We do not permit xs
and zs to overlap. The other forms of opening are defined in terms of this one. Let A denote all the (public)
names in A. Then
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open A renaming (ys to zs)
== open A hiding () renaming (ys to zs)

open A hiding (xs) renaming (ys to zs)
== open A using (A ; xs ; ys) renaming (ys to zs)

An omitted renaming modifier is equivalent to an empty renaming.

3.18.6 Re-exporting names

A useful feature is the ability to re-export names from another module. For instance, one may want to
create a module to collect the definitions from several other modules. This is achieved by qualifying the
open statement with the public keyword:

module Example where
module Nat; where
data Nat; : Set where
zero : Nat;
suc : Nat; — Nat;

module Bool; where

data Bool; : Set where
true false : Bool;

module Prelude where

open Nat; public
open Bool; public

isZero : Nat; — Bool;
isZero zero = true
isZero (suc ) = false

The module Prelude above exports the names Nat, zero, Bool, etc., in addition to isZero.

3.18.7 Parameterised modules

So far, the module system features discussed have dealt solely with scope manipulation. We now turn our
attention to some more advanced features.

It is sometimes useful to be able to work temporarily in a given signature. For instance, when defining
functions for sorting lists it is convenient to assume a set of list elements A and an ordering over A. In Coq
this can be done in two ways: using a functor, which is essentially a function between modules, or using a
section. A section allows you to abstract some arguments from several definitions at once. We introduce
parameterised modules analogous to sections in Coq. When declaring a module you can give a telescope
of module parameters which are abstracted from all the definitions in the module. For instance, a simple
implementation of a sorting function looks like this:

module Sort (A : Set)( = : A — A — Bool) where

insert : A — List A — List A
insert x [] = x = []

(continues on next page)
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(continued from previous page)

insert x (y 1 ys) with x =y
insert x (y :ys) | true
insert x (y :ys) | false

X iy itys
y i insert x ys

sort : List A — List A
sort [] =[]
sort (x @ xs) = insert x (sort xs)

As mentioned parametrising a module has the effect of abstracting the parameters over the definitions in
the module, so outside the Sort module we have

Sort.insert : (A : Set)( = : A — A — Bool) —

A — List A — List A
Sort.sort : (A : Set)(_= : A— A — Bool) —

List A — List A

For function definitions, explicit module parameter become explicit arguments to the abstracted function,
and implicit parameters become implicit arguments. For constructors, however, the parameters are always
implicit arguments. This is a consequence of the fact that module parameters are turned into datatype

parameters, and the datatype parameters are implicit arguments to the constructors. It also happens to be
the reasonable thing to do.

Something which you cannot do in Coq is to apply a section to its arguments. We allow this through the
module application statement. In our example:

module SortNat = Sort Nat legNat

This will define a new module SortNat as follows

module SortNat where
insert : Nat — List Nat — List Nat
insert = Sort.insert Nat legNat

sort : List Nat — List Nat
sort = Sort.sort Nat legNat

The new module can also be parameterised, and you can use name modifiers to control what definitions

from the original module are applied and what names they have in the new module. The general form of a
module application is

module M1 A = M2 terms modifiers ‘

A common pattern is to apply a module to its arguments and then open the resulting module. To simplify
this we introduce the short-hand

open module M1 A = M2 terms [public] mods ‘

for

module M1 A = M2 terms mods
open M1 [public]
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3.18.8 Splitting a program over multiple files

When building large programs it is crucial to be able to split the program over multiple files and to not have
to type check and compile all the files for every change. The module system offers a structured way to do
this. We define a program to be a collection of modules, each module being defined in a separate file. To
gain access to a module defined in a different file you can import the module:

import M

In order to implement this we must be able to find the file in which a module is defined. To do this we
require that the top-level module A.B.C is defined in the file C.agda in the directory A/B/. One could
imagine instead to give a file name to the import statement, but this would mean cluttering the program
with details about the file system which is not very nice.

When importing a module M the module and its contents is brought into scope as if the module had been
defined in the current file. In order to get access to the unqualified names of the module contents it has to
be opened. Similarly to module application we introduce the short-hand

open import M

for

import M
open M

Sometimes the name of an imported module clashes with a local module. In this case it is possible to import
the module under a different name.

import M as M’

It is also possible to attach modifiers to import statements, limiting or changing what names are visible from
inside the module.

3.18.9 Datatype modules and record modules

When you define a datatype it also defines a module so constructors can now be referred to qualified by their
data type. For instance, given:

module DatatypeModules where

data Nat, : Set where
zero : Nat;
suc : Nat, — Nat,

data Fin : Nat, — Set where
zero : Y {n} — Fin (suc n)
suc : VYV {n} — Fin n — Fin (suc n)

you can refer to the constructors unambiguously as Naty.zero, Nats.suc, Fin.zero, and Fin.suc (Nate and
Fin are modules containing the respective constructors). Example:

inj : (nm : Nat;) — Nat.suc n=sucm —n=m
inj .m m refl = refl

Previously you had to write something like
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inj; : (nm : Naty) — = {A = Naty} (suc n) (sucm) = n=m
inj1 .m m refl = refl

to make the type checker able to figure out that you wanted the natural number suc in this case.

Also record declarations define a corresponding module, see Record modules.

3.19 Mutual Recursion

Mutual recursive functions can be written by placing the type signatures of all mutually recursive function
before their definitions:

f:A

g : B[f]
f

g

alf, gl
b[f, gl.

You can mix arbitrary declarations, such as modules and postulates, with mutually recursive definitions. For
data types and records the following syntax is used to separate the declaration from the definition:

- Declaration.
data Vec (A : Set) : Nat — Set -- Note the absence of ‘where’.

- Definition.
data Vec A where
[1] : Vec A zero
~::_t {n : Nat} — A — Vec An — Vec A (suc n)
-- Declaration.
record Sigma (A : Set) (B : A — Set) : Set

-- Definition.
record Sigma A B where
constructor ,
field fst : A
snd : B fst

When making separated declarations/definitions private or abstract you should attach the private keyword
to the declaration and the abstract keyword to the definition. For instance, a private, abstract function can
be defined as

private
f:A

abstract
f=e

3.19.1 Old Syntax

Note: You are advised to avoid using this old syntax if possible, but the old syntax is still supported.

Mutual recursive functions can be written by placing the type signatures of all mutually recursive function
before their definitions:
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mutual
f:A
f =alf, gl
g : B[f]
= Db[f, 9]

This alternative syntax desugars into the new syntax.

3.20 Pattern Synonyms

A pattern synonym is a declaration that can be used on the left hand side (when pattern matching) as
well as the right hand side (in expressions). For example:

data Nat : Set where
zero : Nat
suc : Nat — Nat

pattern z = zero
pattern ss x = suc (suc x)

f : Nat — Nat
fz =z

f (suc z) = ss z
f (ssn) =n

Pattern synonyms are implemented by substitution on the abstract syntax, so definitions are scope-checked
but not type-checked. They are particularly useful for universe constructions.

3.20.1 Overloading

Pattern synonyms can be overloaded as long as all candidates have the same shape. Two pattern synonym
definitions have the same shape if they are equal up to variable and constructor names. Shapes are checked
at resolution time and after expansion of nested pattern synonyms.

For example:

data List (A : Set) : Set where
1nil : List A
lcons : A — List A — List A

data Vec (A : Set) : Nat — Set where
vnil : Vec A zero
vcons : ¥ {n} — A — Vec An — Vec A (suc n)

pattern [] = lnil
pattern [] = vnil
pattern i x xs = lcons x xs
pattern : y ys = vcons y ys

lmap : ¥V {A B} — (
lmap f [] = [
lmap f (x @ xs) = f x it lmap f xs

A — B) — List A — List B
]

(continues on next page)
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(continued from previous page)

vmap : Y {ABn} — (A — B) — Vec An — Vec Bn

vmap f [1] =[]
vmap f (x i xs) = f x it vmap f xs
Flipping the arguments in the synonym for vcons, changing it to pattern : ys y = vcons y ys, results in

the following error when trying to use the synonym:

Cannot resolve overloaded pattern synonym : , since candidates
have different shapes:
pattern : x xs = lcons X Xxs
at pattern-synonyms.lagda.rst:51,13-16
pattern @ ys y = vcons y ys
at pattern-synonyms.lagda.rst:52,13-16
(hint: overloaded pattern synonyms must be equal up to variable and
constructor names)
when checking that the clause lmap f (x = xs) = f x « lmap f xs has
type {A B : Set} — (A — B) — List A — List B

3.21 Positivity Checking

Note: This is a stub.

3.21.1 The NO_POSITIVITY_CHECK pragma
The pragma switches off the positivity checker for data/record definitions and mutual blocks. This pragma
was added in Agda 2.5.1

The pragma must precede a data/record definition or a mutual block. The pragma cannot be used in - -safe
mode.

Examples:

e Skipping a single data definition:

{-# NO POSITIVITY CHECK #-}
data D : Set where
lam : (D — D) — D

o Skipping a single record definition:

{-# NO POSITIVITY CHECK #-}
record U : Set where
field ap : U — U

« Skipping an old-style mutual block. Somewhere within a mutual block before a data/record definition:

mutual
data D : Set where
lam : (D — D) — D

(continues on next page)
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(continued from previous page)

{-# NO_POSITIVITY CHECK #-}
record U : Set where
field ap : U — U

o Skipping an old-style mutual block. Before the mutual keyword:

{-# NO POSITIVITY CHECK #-}
mutual
data D : Set where
lam : (D — D) — D

record U : Set where
field ap : U — U

o Skipping a new-style mutual block. Anywhere before the declaration or the definition of a data/record
in the block:

record U : Set
data D : Set

record U where
field ap : U — U

{-# NO POSITIVITY CHECK #-}
data D where
lam : (D — D) — D

3.21.2 POLARITY pragmas
Polarity pragmas can be attached to postulates. The polarities express how the postulate’s arguments are
used. The following polarities are available:

e : Unused.

e ++: Strictly positive.

+: Positive.

-: Negative.

*: Unknown/mixed.

Polarity pragmas have the form {-# POLARITY name <zero or more polarities> #-}, and can be given wher-
ever fixity declarations can be given. The listed polarities apply to the given postulate’s arguments (ex-
plicit/implicit/instance), from left to right. Polarities currently cannot be given for module parameters. If
the postulate takes n arguments (excluding module parameters), then the number of polarities given must
be between 0 and n (inclusive).

Polarity pragmas make it possible to use postulated type formers in recursive types in the following way:

postulate
00 : Set — Set

{-# POLARITY [] [] ++ #-}

data D : Set where
c:O0bQg—>D
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Note that one can use postulates that may seem benign, together with polarity pragmas, to prove that the
empty type is inhabited:

postulate
= : Set — Set — Set
lambda : {AB : Set} — (A —- B) — A=B
apply : {AB: Set} - A=B — A — B
{-# POLARITY = ++ #-}

data L : Set where

data D : Set where
c:D=1—0D

not-inhabited : D — 1
not-inhabited (c f) = apply f (c f)
d = ¢ (lambda not-inhabited)

bad : 1
bad = not-inhabited d

Polarity pragmas are not allowed in safe mode.

3.22 Postulates

A postulate is a declaration of an element of some type without an accompanying definition. With postulates
we can introduce elements in a type without actually giving the definition of the element itself.

The general form of a postulate declaration is as follows:

postulate
cll ... cli : <Type>
cnl ... cnj : <Type>
Example:
postulate
A B : Set
a HY
b : B
=AB=_: A -> B -> Set

a==b : a=AB=b

Introducing postulates is in general not recommended. Once postulates are introduced the consistency of
the whole development is at risk, because there is nothing that prevents us from introducing an element in
the empty set.

data False : Set where

postulate bottom : False

A preferable way to work is to define a module parametrised by the elements we need
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module Absurd (bt : False) where

module M (A B : Set) (a : A) (b : B)
(=AB=_: A -> B -> Set) (a==b : a =AB= b) where

3.22.1 Postulated built-ins

Some Built-ins such as Float and Char are introduced as a postulate and then given a meaning by the
corresponding {-# BUILTIN ... #-} pragma.

3.23 Pragmas

Pragmas are comments that are not ignored by Agda but have some special meaning. The general format
is:

’{—# <PRAGMA NAME> <arguments> #-}

3.23.1 Index of pragmas

e BUILTIN

e CATCHALL

o COMPILE

o FOREIGN

e NO_POSITIVITY CHECK
e NO_TERMINATION_CHECK
e NON_TERMINATING

e POLARITY

e STATIC

o TERMINATING

o INLINE

e NOINLINE

o WARNING ON_USAGE

See also Command-line and pragma options.

The INLINE and NOINLINE pragmas

A definition marked with an INLINE pragma is inlined during compilation. If it is a simple definition that
does no pattern matching, it is also inlined in function bodies at type-checking time.
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Definitions are automatically marked INLINE if they satisfy the following criteria:
e No pattern matching.
o Uses each argument at most once.
e Does not use all its arguments.

Automatic inlining can be prevented using the NOINLINE pragma.

Example:

- Would be auto-inlined since it doesn't use the type arguments.
o : {ABC: Set} - (B—C) - (A—-B) —A—=C
(feg) x=1(gx)

{-# NOINLINE o #-} -- prevents auto-inlining
- Would not be auto-inlined since it's using all its arguments

0 : (Set — Set) — (Set — Set) — Set — Set
(FoG) X=F (GX)

{-# INLINE o #-} -- force inlining

The WARNING_ON_USAGE pragma
A library author can use a WARNING ON USAGE pragma to attach to a defined name a warning to be raised
whenever this name is used.

This would typically be used to declare a name ‘DEPRECATED’ and advise the end-user to port their code
before the feature is dropped.

Example:

- The new name for the identity
id : {A : Set} — A — A
id x = x

- The deprecated name
Ax—x = id

- The warning
{-# WARNING ON USAGE Ax—x "DEPRECATED: Use ‘id’ instead of ‘Ax—x'" #-}

3.24 Record Types

e Declaring, constructing and decomposing records

Declarating record types

Constructing record values

— Record update

Decomposing record values
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Record modules

Eta-expansion

o Recursive records

Instance fields

Records are types for grouping values together. They generalise the dependent product type by providing
named fields and (optional) further components.

Record types can be declared using the record keyword

record Pair (A B : Set) : Set where
field
fst : A
snd : B

This defines a new type Pair : Set — Set — Set and two projection functions

Pair.fst : {A B : Set} — Pair AB — A
Pair.snd : {A B : Set} — Pair AB — B

Elements of record types can be defined using a record expression

p23 : Pair Nat Nat
p23 = record { fst = 2; snd = 3 }

or using copatterns

p34 : Pair Nat Nat
Pair.fst p34 = 3
Pair.snd p34 = 4

If you use the constructor keyword, you can also use the named constructor to define elements of the record
type:

record Pair (A B : Set) : Set where
constructor _,
field
fst : A
snd : B

p45 : Pair Nat Nat
p4d5 =4 , 5

In this sense, record types behave much like single constructor datatypes (but see Eta-expansion below).

3.24.1 Declaring, constructing and decomposing records
Declarating record types

The general form of a record declaration is as follows:

record <recordname> <parameters> : Set <level> where
<directives>

(continues on next page)
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constructor <constructorname>
field
<fieldnamel> : <typel>
<fieldname2> : <type2>

<declarations>

All the components are optional, and can be given in any order. In particular, fields can be given in more
than one block, interspersed with other declarations. Each field is a component of the record. Types of later
fields can depend on earlier fields.

The directives available are eta-equality, no-eta-equality (see Eta-expansion), inductive and co-inductive
(see Recursive records).

Constructing record values

Record values are constructed by giving a value for each record field:

record { <fieldnamel> = <terml> ; <fieldname2> = <term2> ; ... }

where the types of the terms matches the types of the fields. If a constructor <constructorname> has been
declared for the record, this can also be written

<constructorname> <terml> <term2> ...

For named definitions, this can also be expressed using copatterns:

<named-def> : <recordname> <parameters>
<recordname>.<fieldnamel> <named-def> = <terml>
<recordname>.<fieldname2> <named-def> = <term2>

Records can also be constructed by updating other records.

Building records from modules

The record { <fields> } syntax also accept module names. Fields are defined using the corresponding
definitions from the given module. For instance assuming this record type R and module M:

record R : Set where

field
x X
y Y
z 1 Z

module M where

ro:
r =record {M; z= ...}

This construction supports any combination of explicit field definitions and applied modules. If a field is
both given explicitly and available in one of the modules, then the explicit one takes precedence. If a field
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is available in more than one module then this is ambiguous and therefore rejected. As a consequence the
order of assignments does not matter.

The modules can be both applied to arguments and have import directives such as hiding, using, and
renaming. Here is a contrived example building on the example above:

module M2 (a : A) where
W= ...
zZ= ...

r2: A— R
r2 a = record { M hiding (y); M2 a renaming (w to y) }

Decomposing record values

With the field name, we can project the corresponding component out of a record value. It is also possible
to pattern match against inductive records:

sum : Pair Nat Nat — Nat
sum (X , y) = X +y

Internally, this is translated to

sum' : Pair Nat Nat — Nat
sum' p = (Pair.fst p) + (Pair.snd p)

Note: Naming the constructor is not required to enable pattern matching against record values. Record
expressions can appear as patterns.

Record update

Assume that we have a record type and a corresponding value:

record MyRecord : Set where
field
a b c : Nat

old : MyRecord
old = record { a=1; b=2; c=31}

Then we can update (some of) the record value’s fields in the following way:

new : MyRecord
new = record old { a =0; c =51}

Here new normalises to record { a = 0; b = 2; ¢ =5 }. Any expression yielding a value of type MyRecord
can be used instead of old. Using that records can be built from module names, together with the fact that
all records define a module, this can also be written as

new' : MyRecord
new' = record { MyRecord old; a = 0; ¢ = 5}
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Record updating is not allowed to change types: the resulting value must have the same type as the original
one, including the record parameters. Thus, the type of a record update can be inferred if the type of the
original record can be inferred.

The record update syntax is expanded before type checking. When the expression

record old { upd-fields }

is checked against a record type R, it is expanded to

llet r = old in record { new-fields }

where old is required to have type R and new-fields is defined as follows: for each field x in R,
e if x = e is contained in upd-fields then x = e is included in new-fields, and otherwise
e if x is an explicit field then x = R.x r is included in new-fields, and
e if x is an implicit or instance field, then it is omitted from new-fields.

The reason for treating implicit and instance fields specially is to allow code like the following:

data Vec (A : Set) : Nat — Set where
[1 = Vec A zero
~: V{n} - A — Vec An — Vec A (suc n)

record R : Set where

field
{length} : Nat
vec : Vec Nat length

-- More fields ...

xs : R
xs = record { vec = 0 = 1 2 x [] }
ys = record xs { vec = 0 = [] }

Without the special treatment the last expression would need to include a new binding for length (for
instance length = ).

3.24.2 Record modules

Along with a new type, a record declaration also defines a module with the same name, parameterised over
an element of the record type containing the projection functions. This allows records to be “opened”,
bringing the fields into scope. For instance

swap : {A B : Set} — Pair AB — Pair B A
swap p = snd , fst
where open Pair p

In the example, the record module Pair has the shape

module Pair {A B : Set} (p : Pair A B) where
fst : A
snd : B

It’s possible to add arbitrary definitions to the record module, by defining them inside the record declaration
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record Functor (F : Set — Set) : Set; where
field
fmap : vV {AB} - (A—-B) - FA — FB

<$ :V{AB} - A—>FB—FA
x <$ fb = fmap (A _ — x) fb

Note: In general new definitions need to appear after the field declarations, but simple non-recursive func-
tion definitions without pattern matching can be interleaved with the fields. The reason for this restriction
is that the type of the record constructor needs to be expressible using let-ezpressions. In the example below
D; can only contain declarations for which the generated type of mkR is well-formed.

record R I' : Set:i where
constructor mkR

field f1 : A1
D;
field fz : Ay

mkR : ¥V {F} (fl : Al) ('Let Dl) (f2 H Az) — R T

3.24.3 Eta-expansion

The eta rule for a record type

record R : Set where

field
a: A
b : B
c:C

states that every x : Ris definitionally equal to record { a = R.a x ; b = R.b x ; ¢ = R.c x }. By default,
all (inductive) record types enjoy eta-equality if the positivity checker has confirmed it is safe to have it.
The keywords eta-equality/no-eta-equality enable/disable eta rules for the record type being declared.

3.24.4 Recursive records

Recursive records need to be declared as either inductive or coinductive.

record Tree (A : Set) : Set where
inductive
constructor tree
field
elem H

subtrees : List (Tree A)

record Stream (A : Set) : Set where
coinductive
constructor _
field
head : A
tail : Stream A
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Inductive records have eta-equality on by default, while no-eta-equality is the default for coinductive
records. In fact, the eta-equality and inductive directives are not allowed together, since this can easily
make Agda loop. This can be overridden at your own risk by using the pragma ETA instead.

It is possible to pattern match on inductive records, but not on coinductive ones.

3.24.5 Instance fields

Instance fields, that is record fields marked with {{ }} can be used to model “superclass” dependencies. For
example:

record Eq (A : Set) : Set where
field
== : A — A — Bool

open Eq {{...}}

record Ord (A : Set) : Set where
field
< : A — A — Bool
{{eqA}} : Eq A

open Ord {{...}} hiding (egA)

Now anytime you have a function taking an 0Ord A argument the Eq A instance is also available by virtue of
n-expansion. So this works as you would expect:

< : {A : Set} {{OrdA : Ord A}} — A — A — Bool

x=sy=(x==y) || (x<y)

There is a problem however if you have multiple record arguments with conflicting instance fields. For
instance, suppose we also have a Num record with an Eq field

record Num (A : Set) : Set where
field
fromNat : Nat — A
{{eqA}} : Eq A

open Num {{...}} hiding (egA)

=3 : {A : Set} {{OrdA : Ord A}} {{NumA : Num A}} — A — Bool
x =3 = (x == fromNat 3) || (x < fromNat 3)

Here the Eq A argument to == is not resolved since there are two conflicting candidates: Ord.egA OrdA
and Num.egA NumA. To solve this problem you can declare instance fields as overlappable using the overlap
keyword:

record Ord (A : Set) : Set where
field
< : A — A — Bool
overlap {{eqA}} : Eq A

open Ord {{...}} hiding (egA)

record Num (A : Set) : Set where
field

(continues on next page)
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fromNat : Nat — A
overlap {{eqA}} : Eq A

open Num {{...}} hiding (egA)

<3 : {A : Set} {{OrdA : Ord A}} {{NumA : Num A}} — A — Bool

X =3 = (x == fromNat 3) || (x < fromNat 3)

Whenever there are multiple valid candidates for an instance goal, if all candidates are overlappable, the
goal is solved by the left-most candidate. In the example above that means that the Eq A goal is solved by
the instance from the 0rd argument.

Clauses for instance fields can be omitted when defining values of record types. For instance we can define
Nat instances for Eq, Ord and Num as follows, leaving out cases for the eqA fields:

instance
EgNat : Eq Nat
== {{EgNat}} = Agda.Builtin.Nat. ==

OrdNat : Ord Nat
< {{OrdNat}} = Agda.Builtin.Nat. <

NumNat : Num Nat
fromNat {{NumNat}} n =n

3.25 Reflection

3.25.1 Builtin types

Names

The built-in QNAME type represents quoted names and comes equipped with equality, ordering and a show
function.

postulate Name : Set
{-# BUILTIN QNAME Name #-}

primitive
primQNameEquality : Name — Name — Bool
primQNamelLess : Name — Name — Bool
primShowQName : Name — String

Name literals are created using the quote keyword and can appear both in terms and in patterns

nameOfNat : Name
nameOfNat = quote Nat

isNat : Name — Bool
isNat (quote Nat) = true
isNat = false

Note that the name being quoted must be in scope.
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Metavariables

Metavariables are represented by the built-in AGDAMETA type.

show:

They have primitive equality, ordering and

postulate Meta : Set
{-# BUILTIN AGDAMETA

primitive
primMetaEquality :
primMetaless
primShowMeta

Meta #-}

Meta — Meta — Bool

: Meta — Meta — Bool
: Meta — String

Builtin metavariables show up in reflected terms.

Literals

Literals are mapped to the built-in AGDALITERAL datatype. Given the appropriate built-in binding for the
types Nat, Float, etc, the AGDALITERAL datatype has the following shape:

data Literal : Set where

nat : (n : Nat) — Literal
word6e4 : (n : Word64) — Literal
float (x : Float) — Literal
char : (c : Char) — Literal
string : (s : String) — Literal
name (x : Name) — Literal
meta (x : Meta) — Literal

{-# BUILTIN AGDALITERAL  Literal #-}
{-# BUILTIN AGDALITNAT nat #-}
{-# BUILTIN AGDALITWORD64 word64 #-}
{-# BUILTIN AGDALITFLOAT float #-}
{-# BUILTIN AGDALITCHAR  char #-}
{-# BUILTIN AGDALITSTRING string #-}
{-# BUILTIN AGDALITQNAME name #-}
{-# BUILTIN AGDALITMETA  meta #-}

Arguments

Arguments can be (visible), {hidden}, or {{instance}}:

data Visibility : Set where
visible hidden instance’ : Visibility

{-# BUILTIN HIDING
{-# BUILTIN VISIBLE
{-# BUILTIN HIDDEN
{-# BUILTIN INSTANCE

Visibility #-}
visible #-}
hidden #-}
instance’ #-}

Arguments can be relevant or irrelevant:

data Relevance : Set

relevant irrelevant

where
: Relevance

(continues on next page)
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{-# BUILTIN RELEVANCE Relevance #-}
{-# BUILTIN RELEVANT relevant #-}
{-# BUILTIN IRRELEVANT irrelevant #-}

Visibility and relevance characterise the behaviour of an argument:

data ArgInfo : Set where
arg-info : (v : Visibility) (r : Relevance) — ArgInfo

data Arg (A : Set) : Set where
arg : (i : ArgInfo) (x : A) — Arg A

{-# BUILTIN ARGINFO ArgInfo #-}
{-# BUILTIN ARGARGINFO arg-info #-}

{-# BUILTIN ARG Arg #-}
{-# BUILTIN ARGARG arg #-}
Patterns

Reflected patterns are bound to the AGDAPATTERN built-in using the following data type.

data Pattern : Set where

con : (c : Name) (ps : List (Arg Pattern)) — Pattern
dot : Pattern

var : (s : String) — Pattern

lit : (L : Literal) — Pattern

proj : (f : Name) — Pattern

absurd : Pattern

{-# BUILTIN AGDAPATTERN  Pattern #-}

{-# BUILTIN AGDAPATCON con #-}
{-# BUILTIN AGDAPATDOT dot #-}
{-# BUILTIN AGDAPATVAR var #-}
{-# BUILTIN AGDAPATLIT lit #-}

{-# BUILTIN AGDAPATPROJ  proj #-}
{-# BUILTIN AGDAPATABSURD absurd #-}

Name abstraction

data Abs (A : Set) : Set where
abs : (s : String) (x : A) — Abs A

{-# BUILTIN ABS  Abs #-}
{-# BUILTIN ABSABS abs #-}

Terms

Terms, sorts and clauses are mutually recursive and mapped to the AGDATERM, AGDASORT and AGDACLAUSE
built-ins respectively. Types are simply terms. Terms use de Bruijn indices to represent variables.
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data Term : Set
data Sort : Set
data Clause : Set
Type = Term

data Term where

var : (x : Nat) (args : List (Arg Term)) — Term

con : (c : Name) (args : List (Arg Term)) — Term

def : (f : Name) (args : List (Arg Term)) — Term

lam : (v @ Visibility) (t : Abs Term) — Term

pat-lam : (cs : List Clause) (args : List (Arg Term)) — Term
pi : (a : Arg Type) (b : Abs Type) — Term

agda-sort : (s : Sort) — Term

lit : (U : Literal) — Term

meta : (x : Meta) — List (Arg Term) — Term

unknown : Term -- Treated as ' ' when unquoting.

data Sort where
set : (t : Term) — Sort -- A Set of a given (possibly neutral) level.
lit : (n : Nat) — Sort -- A Set of a given concrete level.
unknown : Sort

data Clause where
clause : (ps : List (Arg Pattern)) (t : Term) — Clause
absurd-clause : (ps : List (Arg Pattern)) — Clause

{-# BUILTIN AGDASORT Sort  #-}
{-# BUILTIN AGDATERM Term  #-}
{-# BUILTIN AGDACLAUSE C(lause #-}

{-# BUILTIN AGDATERMVAR var #-}
{-# BUILTIN AGDATERMCON con #-}
{-# BUILTIN AGDATERMDEF def #-}
{-# BUILTIN AGDATERMMETA meta #-}
{-# BUILTIN AGDATERMLAM lam #-}
{-# BUILTIN AGDATERMEXTLAM pat-lam  #-}
{-# BUILTIN AGDATERMPI pi #-}
{-# BUILTIN AGDATERMSORT agda-sort #-}
{-# BUILTIN AGDATERMLIT it #-}

{-# BUILTIN AGDATERMUNSUPPORTED unknown  #-}

{-# BUILTIN AGDASORTSET set #-}
{-# BUILTIN AGDASORTLIT lit #-}
{-# BUILTIN AGDASORTUNSUPPORTED unknown #-}

{-# BUILTIN AGDACLAUSECLAUSE clause #-}
{-# BUILTIN AGDACLAUSEABSURD absurd-clause #-}

Absurd lambdas A () are quoted to extended lambdas with an absurd clause.

The built-in constructors AGDATERMUNSUPPORTED and AGDASORTUNSUPPORTED are tramnslated to meta variables
when unquoting.

Declarations

There is a built-in type AGDADEFINITION representing definitions. Values of this type is returned by the
AGDATCMGETDEFINITION built-in described below.
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data Definition : Set where

function : (cs : List Clause) — Definition
data-type : (pars : Nat) (cs : List Name) — Definition -- parameters and constructors
record-type : (c : Name) (fs : List (Arg Name)) — -- c: name of record constructor
Definition -- fs: fields
data-cons : (d : Name) — Definition -- d: name of data type
axiom : Definition
prim-fun : Definition
{-# BUILTIN AGDADEFINITION Definition #-}
{-# BUILTIN AGDADEFINITIONFUNDEF function #-}
{-# BUILTIN AGDADEFINITIONDATADEF data-type #-}
{-# BUILTIN AGDADEFINITIONRECORDDEF record-type #-}
{-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-cons #-}
{-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-}
{-# BUILTIN AGDADEFINITIONPRIMITIVE prim-fun #-}

Type errors

Type checking computations (see below ) can fail with an error, which is a list of ErrorParts. This allows
metaprograms to generate nice errors without having to implement pretty printing for reflected terms.

-- Error messages can contain embedded names and terms.
data ErrorPart : Set where

strErr : String — ErrorPart

termErr : Term — ErrorPart

nameErr : Name — ErrorPart

{-# BUILTIN AGDAERRORPART ErrorPart #-}
{-# BUILTIN AGDAERRORPARTSTRING strErr #-}
{-# BUILTIN AGDAERRORPARTTERM  termErr  #-}
{-# BUILTIN AGDAERRORPARTNAME  nameErr  #-}

Type checking computations

Metaprograms, i.e. programs that create other programs, run in a built-in type checking monad TC:

postulate

TC : ¥V {a} — Set a — Set a

returnTC : V¥V {a} {A : Set a} - A — TC A

bindTC :'V {a b} {A: Set a} {B: Set b} - TCA — (A — TCB) — TCB
{-# BUILTIN AGDATCM TC #-}

{-# BUILTIN AGDATCMRETURN returnTC #-}
{-# BUILTIN AGDATCMBIND  bindTC  #-}

The TC monad provides an interface to the Agda type checker using the following primitive operations:

postulate
-- Unify two terms, potentially solving metavariables in the process.
unify : Term — Term — TC T

-- Throw a type error. Can be caught by catchTC.
typeError : V {a} {A : Set a} — List ErrorPart — TC A

(continues on next page)
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-- Block a type checking computation on a metavariable. This will abort
-- the computation and restart it (from the beginning) when the

-- metavariable is solved.

blockOnMeta : ¥ {a} {A : Set a} — Meta — TC A

-- Prevent current solutions of metavariables from being rolled back in
-- case 'blockOnMeta' is called.
commitTC : TC T

-- Backtrack and try the second argument if the first argument throws a
-- type error.
catchTC : V {a} {A : Set a} — TCA — TCA — TC A

-- Infer the type of a given term
inferType : Term — TC Type

-- Check a term against a given type. This may resolve implicit arguments
-- 1n the term, so a new refined term is returned. Can be used to create
-- new metavariables: newMeta t = checkType unknown t

checkType : Term — Type — TC Term

-- Compute the normal form of a term.
normalise : Term — TC Term

-- Compute the weak head normal form of a term.
reduce : Term — TC Term

-- Get the current context. Returns the context in reverse order, so that

-- it is indexable by deBruijn index. Note that the types in the context are
-- valid in the rest of the context. To use in the current context they need
-- to be weakened by 1 + their position in the list.

getContext : TC (List (Arg Type))

-- Extend the current context with a variable of the given type.
extendContext : V {a} {A : Set a} — Arg Type — TC A — TC A

-- Set the current context. Takes a context telescope with the outer-most

-- entry first, in contrast to 'getContext'. Each type should be valid in the
-- context formed by the preceding elements in the list.

inContext : ¥V {a} {A : Set a} — List (Arg Type) — TC A — TC A

-- Quote a value, returning the corresponding Term.
quoteTC : V {a} {A : Set a} — A — TC Term

-- Unquote a Term, returning the corresponding value.
unquoteTC : ¥V {a} {A : Set a} — Term — TC A

-- Create a fresh name.
freshName : String — TC Name

-- Declare a new function of the given type. The function must be defined
-- later using 'defineFun'. Takes an Arg Name to allow declaring instances
-- and irrelevant functions. The Visibility of the Arg must not be hidden.
declareDef : Arg Name — Type — TC T

(continues on next page)
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-- Declare a new postulate of the given type. The Visibility of the Arg

-- must not be hidden. It fails when executed from command-line with --safe
-- option.

declarePostulate : Arg Name — Type — TC T

-- Define a declared function. The function may have been declared using
-- 'declareDef' or with an explicit type signature in the program.
defineFun : Name — List Clause — TC T

-- Get the type of a defined name. Replaces 'primNameType'.
getType : Name — TC Type

-- Get the definition of a defined name. Replaces 'primNameDefinition'.
getDefinition : Name — TC Definition

-- Check if a name refers to a macro
isMacro : Name — TC Bool

-- Change the behaviour of inferType, checkType, quoteTC, getContext
-- to normalise (or not) their results. The default behaviour is no
-- normalisation.

withNormalisation : ¥V {a} {A : Set a} — Bool — TC A — TC A

-- Prints the third argument if the corresponding verbosity level is turned
-- on (with the -v flag to Agda).
debugPrint : String — Nat — List ErrorPart — TC T

{-# BUILTIN AGDATCMUNIFY unify #-}
{-# BUILTIN AGDATCMTYPEERROR typeError #-}
{-# BUILTIN AGDATCMBLOCKONMETA blockOnMeta #-}
{-# BUILTIN AGDATCMCATCHERROR catchTC #-}
{-# BUILTIN AGDATCMINFERTYPE inferType #-}
{-# BUILTIN AGDATCMCHECKTYPE checkType #-}
{-# BUILTIN AGDATCMNORMALISE normalise #-}
{-# BUILTIN AGDATCMREDUCE reduce #-}
{-# BUILTIN AGDATCMGETCONTEXT getContext #-}
{-# BUILTIN AGDATCMEXTENDCONTEXT extendContext #-}
{-# BUILTIN AGDATCMINCONTEXT inContext #-}
{-# BUILTIN AGDATCMQUOTETERM quoteTC #-}
{-# BUILTIN AGDATCMUNQUOTETERM unquoteTC #-}
{-# BUILTIN AGDATCMFRESHNAME freshName #-}
{-# BUILTIN AGDATCMDECLAREDEF declareDef #-}
{-# BUILTIN AGDATCMDECLAREPOSTULATE  declarePostulate  #-}
{-# BUILTIN AGDATCMDEFINEFUN defineFun #-}
{-# BUILTIN AGDATCMGETTYPE getType #-}
{-# BUILTIN AGDATCMGETDEFINITION getDefinition #-}
{-# BUILTIN AGDATCMCOMMIT commitTC #-}
{-# BUILTIN AGDATCMISMACRO isMacro #-}
{-# BUILTIN AGDATCMWITHNORMALISATION withNormalisation #-}
{-# BUILTIN AGDATCMDEBUGPRINT debugPrint #-}

3.25.2 Metaprogramming

There are three ways to run a metaprogram (TC computation). To run a metaprogram in a term position
you use a macro . To run metaprograms to create top-level definitions you can use the unquoteDecl and
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unquoteDef primitives (see Unquoting Declarations).

Macros

Macros are functions of type t; — t, — .. — Term — TC T that are defined in a macro block. The last
argument is supplied by the type checker and will be the representation of a metavariable that should be
instantiated with the result of the macro.

Macro application is guided by the type of the macro, where Term and Name arguments are quoted before
passed to the macro. Arguments of any other type are preserved as-is.

For example, the macro application f u v w where f : Term — Name — Bool — Term — TC T desugars
into:

unquote (f (quoteTerm u) (quote v) w)

where quoteTerm u takes a u of arbitrary type and returns its representation in the Term data type, and
unguote m runs a computation in the TC monad. Specifically, when checking unquote m : A for some type A
the type checker proceeds as follows:

e Checkm : Term — TC T.

e Create a fresh metavariable hole : A.

e Let ghole : Term be the quoted representation of hole.
e Execute m ghole.

o Return (the now hopefully instantiated) hole.

Reflected macro calls are constructed using the def constructor, so given a macrog : Term — TC T the term
def (quote g) [] unquotes to a macro call to g.

Note: The quoteTerm and unquote primitives are available in the language, but it is recommended to avoid
using them in favour of macros.

Limitations:

e Macros cannot be recursive. This can be worked around by defining the recursive function outside the
macro block and have the macro call the recursive function.

Silly example:

macro
plus-to-times : Term — Term — TC T
plus-to-times (def (quote + ) (a @ b [])) hole = unify hole (def (quote * ) (a = b = []))

plus-to-times v hole = unify hole v

thm : (a b : Nat) — plus-to-times (a + b) =a * b
thm a b = refl

Macros lets you write tactics that can be applied without any syntactic overhead. For instance, suppose you
have a solver:

magic : Type — Term

that takes a reflected goal and outputs a proof (when successful). You can then define the following macro:
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macro
by-magic : Term — TC T
by-magic hole =
bindTC (inferType hole) A goal —
unify hole (magic goal)

This lets you apply the magic tactic as a normal function:

thm : = P = NP
thm = by-magic

Unquoting Declarations

While macros let you write metaprograms to create terms, it is also useful to be able to create top-level
definitions. You can do this from a macro using the declareDef and defineFun primitives, but there is no
way to bring such definitions into scope. For this purpose there are two top-level primitives unquoteDecl and
unquoteDef that runs a TC computation in a declaration position. They both have the same form:

unquoteDecl x; .. Xn =m
unquoteDef X; .. Xn =m

except that the list of names can be empty for unquoteDecl, but not for unquoteDef. In both cases m should
have type TC T. The main difference between the two is that unquoteDecl requires m to both declare (with
declareDef) and define (with defineFun) the xi whereas unquoteDef expects the x: to be already declared.
In other words, unquoteDecl brings the x: into scope, but unquoteDef requires them to already be in scope.

In m the xi stand for the names of the functions being defined (i.e. xi : Name) rather than the actual
functions.

One advantage of unquoteDef over unquoteDecl is that unquoteDef is allowed in mutual blocks, allowing
mutually recursion between generated definitions and hand-written definitions.

3.26 Rewriting

Note: This is a stub.

3.27 Safe Agda

By using the command-line option --safe, a user can specify that Agda should ensure that features leading
to possible inconsistencies should be disabled.

Here is a list of the features --safe is incompatible with:
e postulate can be used to assume any axiom.
e --allow-unsolved-metas forces Agda to accept unfinished proofs.

e --no-positivity-check makes it possible to write non-terminating programs by structural “induction”
on non strictly positive datatypes.

e --no-termination-check gives loopy programs any type.
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e --type-in-type allows the user to encode the Girard-Hurken paradox.

e --injective-type-constructors together with excluded middle leads to an inconsistency via Chnug-Kil
Hur’s construction.

o guardedness-preserving-type-constructors is based on a rather operational understanding of co/#_;
it’s not yet clear if this extension is consistent.

o --experimental-irrelevance enables potentially unsound irrelevance features (irrelevant levels, irrele-
vant data matching).

e --rewriting turns any equation into one that holds definitionally. It can at the very least break
convergence.

3.27.1 Known lIssues
Pragma Option
It is possible to specify {-# OPTIONS --safe #-} at the top of a file. Unfortunately a known bug (see #2487)

means that the option choice is not repercuted in the imported file. Therefore only the command-line option
can be trusted.

Standard Library

The standard library uses a lot of unsafe features (e.g. postulate in the Foreign Function Interface) and
these are not isolated in separate modules. As a consequence virtually any project relying on the standard
library will not be successfully typechecked with the --safe option. There is work in progress to fix this
issue.

3.28 Sized Types

Note: This is a stub.

Sizes help the termination checker by tracking the depth of data structures across definition boundaries.

The built-in combinators for sizes are described in Sized types.

3.28.1 Example for coinduction: finite languages

See Abel 2017 and Traytel 2016.

Decidable languages can be represented as infinite trees. Each node has as many children as the number of
characters in the alphabet A. Each path from the root of the tree to a node determines a possible word in
the language. Fach node has a boolean label, which is true if and only if the word corresponding to that
node is in the language. In particular, the root node of the tree is labelled true if and only if the word e
belongs to the language.

These infinite trees can be represented as the following coinductive data-type:
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record Lang (i : Size) (A : Set) : Set where
coinductive
field
v : Bool
0 : V{j : Size< i} —+ A — Lang j A

open Lang

As we said before, given a language a : Lang A, v a = true iff ¢ € a. On the other hand, the language 0 a
x : Lang A is the Brzozowski derivative of a with respect to the character x, that is, w € § a x iff xw € a.

With this data type, we can define some regular languages. The first one, the empty language, contains no
words; so all the nodes are labelled false:

:V {i A} — Lang i A
o = false
2 =0

SO

The second one is the language containing a single word; the empty word. The root node is labelled true,
and all the others are labelled false:

:V {i A} — Lang i A
€ = true
€ =0

€
v
0

To compute the union (or sum) of two languages, we do a point-wise or operation on the labels of their
nodes:

+ : VYV {iA} - Lang i A — Lang i A — Lang i A
(a+b) =va vvb
(

infixl 10+

Now, lets define concatenation. The base case (v) is straightforward: e € a -+ biff € € aand € € b.

For the derivative (4), assume that we have a word w,w € & (a - b) x. This means that xw = 8, with « €
aand 8 € b.

We have to consider two cases:
1. € € a. Then, either:
e a =¢,and 8 = xw, wherew € § b x.

e a=xa',witha’” € 6 ax,andw=a’8 €4d ax - b.

2. € ¢ a. Then, only the second case above is possible:

e a=xa',witha’ € §dax,andw=a’'8€F§ ax - b.

:V {i A} - Lang i A — Lang i A — Lang i A

(a+-b) =vananvhb
(a+b)x=ifvathendax -b+dbxelsedax-b
infixl 20 -

Here is where sized types really shine. Without sized types, the termination checker would not be able
to recognize that + or if then else are not inspecting the tree, which could render the definition non-
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productive. By contrast, with sized types, we know that the a + b is defined to the same depth as a and b
are.

In a similar spirit, we can define the Kleene star:

* : ¥V {i A} —- Lang i A — Lang i A
v (a *) = true
d(a*)x=dax-a*

infixl 30 *

Again, because the types tell us that _ - preserves the size of its inputs, we can have the recursive call to
a * under a function call to -

Testing

First, we want to give a precise notion of membership in a language. We consider a word as a List of
characters.

€ :V {i} {A} — List i A — Lang i A — Bool
[1 €Ea=Va
(x mw) Ea=w€OHax

Note how the size of the word we test for membership cannot be larger than the depth to which the language
tree is defined.

If we want to use regular, non-sized lists, we need to ask for the language to have size co.

€Ea=vVa
Xxiuiw) Ea=we€EJIax

€ : ¥V {A} — List A — Lang oo A — Bool
[1
(

Intuitively, co is a Size larger than the size of any term than one could possibly define in Agda.

Now, let’s consider binary strings as words. First, we define the languages [ x ] containing the single word
“x” of length 1, for alphabet A = Bool:

[ ] :V {i} — Bool — Lang i Bool
vi _ 1 = false

0 [ false ] false
0 [ true ] true
0 [ false ] true
O [ true ] false

n n n
[ T O IS e}

Now we can define the bip-bop language, consisting of strings of even length alternating letters “true” and
“false”.

bip-bop = ([ true ] - [ false ])*

Let’s test a few words for membership in the language bip-bop!

test; @ (true i false i true i false i true :: false : []) € bip-bop = true
test; = refl

test, @ (true i false i true i false i true = []) € bip-bop = false

test, = refl

(continues on next page)
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(continued from previous page)

tests : (true :: true :: false :: []) € bip-bop = false
tests = refl

3.28.2 References

Equational Reasoning about Formal Languages in Coalgebraic Style, Andreas Abel.

Formal Languages, Formally and Coinductively, Dmitriy Traytel, FSCD (2016).

3.29 Syntactic Sugar

e Do-notation
— Desugaring

— FExample

o Idiom brackets

3.29.1 Do-notation

A do-block consists of the layout keyword do followed by a sequence of do-statements, where

do-stmt := pat « expr [where lam-clauses]
| let decls
| expr

lam-clause ::= pat — expr

The where clause of a bind is used to handle the cases not matched by the pattern left of the arrow. See
details below.

Note: Arrows can use either unicode («/—) or ASCII (<-/->) variants.

For example:

filter : {A : Set} — (A — Bool) — List A — List A
filter p xs = do
X « XS
true « p x = []
where false — []
x =[]

Do-notation is desugared before scope checking and is translated into calls to >>= and >> , whatever those
happen to be bound in the context of the do-block. This means that do-blocks are not tied to any particular
notion of monad. In fact if there are no monadic statements in the do block it can be used as sugar for a
let:
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pure-do : Nat — Nat
pure-do n = do
let p2m=m*m
p4d m = p2 (p2 m)
p4 n

check-pure-do : pure-do 5 = 625
check-pure-do = refl

Desugaring
Statement Sugar Desugars to
Simple bind
do X «m m>>= A\ x —
m' m'
Pattern bind
dopem m >>= )\ where
where pi — mi p —m'
m' pi — mi
Non-binding statement
do m m >>
m' m'
Let
do let ds let ds in
m' m'

If the pattern in the bind is exhaustive, the where-clause can be omitted.

Example
Do-notation becomes quite powerful together with pattern matching on indexed data. As an example, let
us write a correct-by-construction type checker for simply typed A-calculus.

First we define the raw terms, using de Bruijn indices for variables and explicit type annotations on the
lambda:

infixr 6 =>_
data Type : Set where
nat : Type
=> : (A B : Type) — Type

data Raw : Set where

var : (x : Nat) — Raw
1it : (n : Nat) — Raw
suc : Raw

app : (s t : Raw) — Raw
lam : (A : Type) (t : Raw) — Raw

Next up, well-typed terms:
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Context = List Type

-- A proof of x € xs is the index into xs where x is located.
infix 2 €
data € {A : Set} (x : A) : List A — Set where

zero : V {xs} — X € x i XS

suc : V¥V {y xs} — x € xs — x €y i XS

data Term (I' : Context) : Type — Set where
var : VY {A} (x : A€T) — Term I" A
lit : (n : Nat) — Term I' nat
suc : Term I' (nat => nat)
app : Y {AB} (s : TermI' (A=>B)) (t : TermI' A) — Term I" B
lam : V A {B} (t : Term (A = I') B) — Term I' (A => B)

Given a well-typed term we can mechaincally erase all the type information (except the annotation on the
lambda) to get the corresponding raw term:

rawIndex : ¥V {A} {x : A} {xs} — x € xs — Nat
rawIndex zero = zero
rawIndex (suc i) = suc (rawIndex i)

eraseTypes : ¥V {I' A} — Term I' A — Raw

eraseTypes (var x) = var (rawIndex x)

eraseTypes (lit n) = lit n

eraseTypes suc = suc

eraseTypes (app s t) = app (eraseTypes s) (eraseTypes t)
eraseTypes (lam A t) = lam A (eraseTypes t)

Now we're ready to write the type checker. The goal is to have a function that takes a raw term and either
fails with a type error, or returns a well-typed term that erases to the raw term it started with. First, lets
define the return type. It’s parameterised by a context and the raw term to be checked:

data WellTyped I' e : Set where
ok :