

Aspic: A Line-Art Processor

Philip Hazel

Aspic: A Line-Art Processor

Author: Philip Hazel

Copyright © 2008 University of Cambridge

Revision 1.05 04 March 2008

Contents

1. Introduction to Aspic ...1

 1.1 The aspic command ..1

2. Simple Aspic examples ...2

3. General operation of Aspic ..10

 3.1 Position of the coordinate origin ..10
 3.2 The bounding box ..10

4. Aspic input ...11

 4.1 Command format ...11
 4.2 File inclusion ...11

5. Aspic variables ..12

6. Aspic macros ...13

7. Types of value used in commands ..15

 7.1 <angle> ..15
 7.2 <boxpoint> ...15
 7.3 <colour> ...15
 7.4 <greylevel> ..15
 7.5 <integer> ...15
 7.6 <label> ...15
 7.7 <length> ...15
 7.8 <position> ..15
 7.9 <text> ...16

8. Drawing objects and text ..17

 8.1 arc ...17
 8.2 arcarrow ...19
 8.3 arrow ..19
 8.4 box ..20
 8.5 circle ...21
 8.6 ellipse ...21
 8.7 iarc ..21
 8.8 ibox ...22
 8.9 icircle ..22
 8.10 iellipse ..22
 8.11 iline ...22
 8.12 line ..22
 8.13 text ..23

9. Filled shapes ..24

10. Altering the ‘last’ item ...25

11. Changing the current direction ..26

12. Font control and character coding ..27

iii

 12.1 The bindfont command ...27
 12.2 The setfont command ...27
 12.3 The textdepth and fontdepth commands ..27
 12.4 Input character encoding ..27
 12.5 PostScript output character encoding ...28
 12.6 SVG output character encoding ..29

13. Overall Aspic configuration ..30

 13.1 boundingbox ...30
 13.2 magnify ..30
 13.3 resolution ...30

14. Saving and restoring the environment ...31

15. Changing environment parameters ...32

16. List of commands ..34

17. Using Aspic with SGCAL ...36

 17.1 Font control ...37
 17.2 The wait feature ..38
 17.3 The redraw feature ..38
 17.4 Wide bounding boxes ..38

iv

1. Introduction to Aspic

Aspic is a program that converts a textual description of a line drawing into instructions that can be
processed by standard software in order to draw the picture. This method of defining line art graphics
is the same as that of the PIC system, described by Kernighan inSoftware – Practice and Experience,
12, pages 1–21 (1982), though the details of the Aspic commands are quite different.

The default output format is Encapsulated PostScript (EPS). There is also support for output in
Scalable Vector Graphics (SVG) format. Aspic was originally developed for use with the SGCAL
typesetter (which is not widely released), and it still contains some legacy support for that application
(see chapter 17).

Although Aspic supports the inclusion of text in drawings, it does no text processing of its own, in the
sense that it contains no code for finding the displayed length of text strings. The implementation of
operations such as text justification or centering (which can be specified in Aspic) are therefore left to
the back-end processor. Aspic uses the font size to guess how much vertical space to leave between
lines, but this can be increased by the user if required. Character encoding is discussed in chapter 12.

1.1 The aspic command
The command to run Aspic is as follows:

aspic [options] input-file output-file

If a single hyphen character is given as a file name, it refers to the standard input or output. If no file
names are given, Aspic reads from the standard input and writes to the standard output. If only one
name is given, it is taken as the input, and output is again to the standard output. Error messages are
always written to the standard error stream. The options are as follows:

-help causes Aspic to display usage information on the standard output, and then exit.

-nv disables the use of Aspic variables. This means that dollar characters in the input file are no
longer treated specially. The option is useful when there are dollar characters in an Aspic source that
does not make use of Aspic variables.

-ps (the default) causes Aspic to write Encapsulated PostScript output. This can be viewed with a
PostScript viewer such asgv and included in PostScript documents (which can easily be converted to
PDF).

-sgcal causes Aspic to generate SGCAL input as its output (see chapter 17 for details).

-svg causes Aspic to generate Scalable Vector Graphics (SVG) output. This can be viewed with an
SVG viewer such as xsvg and included in XML documents.

-tr causes Aspic to translate certain input characters; for example, a grave accent is translated into a
typographic opening quote. Details are given in section 12.4.

-v causes Aspic to display its version number on the standard output, and then exit.

1 Introduction to Aspic (1)

2. Simple Aspic examples

This chapter uses some simple examples to introduce the various facilities that are available in Aspic.
Subsequent chapters contain reference material that explains things in more detail.

Aspic operates in a traditional Cartesian coordinate system, with the positive directions to the right
and upwards. For PostScript output the units of length used in Aspic commands are printers’ points.
There are 72 points to an inch. SVG output contains the same dimensions without specifying a unit.
The interpretation is left to the rendering software. On a screen, SVG dimensions are likely to be
treated as pixels.

The examples below all show examples of Aspic source, followed by the resulting picture. We start
with a simple diagram:

box "A"; line; circle "B";

A B

Each Aspic command is terminated by a semicolon, so there are three commands in this example:

(1) Thebox command causes a box to be drawn, containing the text at its centre. The default box
size is 72 by 36 points (that is, 1" × 0.5"). There are commands to change the default – see
chapter 15 – and the size of an individual box can of course be specified (see below). There is
also amagnify command that affects the sizes of all shapes (but not the size of any text). In this
document, all the pictures are reduced by a factor of 0.8, so the size of the box above is actually
0.8" × 0.4".

(2) The line command draws a straight line; as nothing else is specified, the line is drawn in the
current direction of motion, which defaults to the right. The length is the standard horizontal line
length, which defaults to 72 points (1 inch).

(3) Thecircle command draws a circle; as nothing was specified as to how it should join onto its
predecessor, the ‘obvious’ joining position is chosen. The circle is drawn at a standard size.
(Again, there are commands for changing this.) Aspic provides for ellipses as well as circles.

Each Aspic command that causes a shape to be drawn may have any number of text strings associated
with it. In the above example, the box and the circle each have one associated string. For closed
shapes such as these, the strings are centred in the shape. For horizontal lines, the strings are centred
above and below the line, while for other kinds of line they are positioned near the middle of the line.
For example:

line "first" "second"; line down "third" "fourth";

first
second third

fourth

The commands introduced above may be used with options that change the size of the shape that is
drawn. For example:

box width 100 depth 20; line right 40; circle radius 10;

The current direction of motion can be changed by the commandsup, down, left, and right . In
addition, an individual line may be drawn in any direction and of any length (without changing the
defaults) by means of appropriate options:

2 Simple Aspic examples (2)

down; box "A"; line; circle "B";
line right 40; line left 20 up 20; line;

A

B

The length values for lines are interpreted as distances in the Cartesian coordinate directions rather
than the actual length of the line drawn. There are separate standard values for the horizontal and
vertical lengths, which are 72 and 36 points, respectively, by default.

line; line up right; line left; line down;

If a sequence of closed shapes occurs, the shapes are joined together according to the current direction
of motion, but a closed shape following a line joins according to the direction of the line.

box "A"; box "B"; box "C"; line;
down; circle "D"; circle "E"; line left;

A B C D

E

There is a join option for specifying where a closed shape joins its predecessor:

box "A"; box join top left "B";
circle join centre; box join left "C";

A

B C

The argument forjoin specifies a point on the new shape that is to be joined to a point on the previous
shape. Thus, in the above example, the top left-hand corner of the second box is the point which is
joined to the first box. The joining point on the previous shape is the complementary position by
default, but it can be also specified explicitly. For example:

box "A"; box depth 50 join top left to top right "B";

3 Simple Aspic examples (2)

A
B

There are nine possible joining points – the four corners, the midpoints of the four edges, and the
centre point. The midpoints of the edges are identified by the unqualified names of the edges. Thus, if
the only joining information is an edge name, two boxes are joined with the midpoints of the edges
aligned:

box "A"; box depth 50 join left "B";

A B

Joins can refer to items other than their immediate predecessors, by using labels. For example:

BOXA: box "A";
BOXB: box "B";
 circle radius 10 join centre to centre of BOXA;
 box width 20 depth 20 join centre to centre of BOXB;

A B

The join option may also be used for specifying how a closed shape joins onto a line:

line; ellipse join top;

When a circle or an ellipse is being joined, the ‘corner’ joining points refer to points on the circumfer-
ence, not the corners of the bounding box. The size of an ellipse is specified as a width and a depth,
which determine the lengths of the horizontal and vertical axes. For example:

ellipse width 100 depth 20;
ellipse width 20 depth 60;

Lines may be drawn dashed, and, by using thearrow command, with arrowheads on one or both
ends.

line dashed; arrow down; arrow left both;
arrow down back dashed;

By default,arrow requests an arrowhead on the end of the line. The optionboth gives arrowheads on
both ends, whereas back gives a backward-pointing arrowhead only.

4 Simple Aspic examples (2)

Circular arcs are the other form of non-closed shape that Aspic supports. By default an arc is drawn in
an anti-clockwise direction, for 90 degrees, and at a standard radius (default 36). If an arc follows a
line or another arc, it continues in the same direction by default. If the very first shape is an arc, its
initial direction is upwards.

arc "A"; line left; arc "B";

AB

The options up, down, left, and right can be used to specify a different initial direction for the arc:

line; arc down;

The angle subtended, the radius, and clockwise drawing can be specified:

arc "A"; arc angle 180 radius 20 "B";
arc clockwise angle 270 radius 40 "C";

A
B

C

Arcs can be drawn from and to particular points, and, by using thearcarrow command, with
arrowheads.

line; arcarrow from end to start;

In this example, the positions ‘end’ and ‘start’ are taken to refer to the last-drawn shape. To refer to
other shapes, labels are used:

BOXA: box "A"; line; ellipse "E";
arcarrow from top to top of BOXA;

A E

When an arc of this type is drawn,either the radiusor the angle subtended at the centre of the arcor
the ‘depth’ of the arcor a point through which the arc is to pass may be specified, but only one of
these. The ‘depth’ of an arc is the length of the line from the middle of the arc to the middle of the
line joining the endpoints. If none of the above parameters is specified, a subtended angle of 90
degrees is used. Here is an example that shows the different ways of specifying arcs:

AA: line;
arc from end to start "1";
arc from end of AA to start of AA angle 180 "2";

5 Simple Aspic examples (2)

arc clockwise from end of AA to start of AA radius 100 "3";
BB: arc to start depth 24 "4";
arc clockwise to start via middle of BB plus (10,-10) "5";

1

2

3
4
5

The fifth arc in this example passes through a point that is defined as

middle of BB plus (10,-10)

The ‘middle of BB’ is halfway along the fourth arc; theplus qualifier applies a relative offset that is
10 points to the right and 10 points down from this midpoint. The starting and ending points of
straight lines can also be specified explicitly; if both are specified, that determines the length of the
line.

AA: line up; BB: line right;
line from middle of AA to middle of BB;

Positions on a line or arc may be specified asstart, middle, or end (the wordcentre is reserved for
the centre of a closed shape, or for the centre point of a circular arc). More precise positioning can be
achieved by specifying a fraction of the way along the line from a named position:

AA: line right 100;
arrow up from 0.2 start of AA;
arrow down from 0.3 end of AA;

The upward arrow starts at a point that is 0.2 of the way along the line from the start, and the
downward arrow starts at a point that is 0.3 of the way along the line from the end. This feature also
applies to the edges of boxes:

AA: box;
arcarrow from 0.1 right of AA to 0.2 top of AA angle 270;

Positions along the top and bottom are measured from the left; positions on the sides are measured
from the bottom. If these options are used with a circle or an ellipse, the positions used are those of
the circumscribing box. Any position can be further modified by an explicit distance, specified as a

6 Simple Aspic examples (2)

vector enclosed in parentheses followingplus. In the next example, the arrow starts at a position 20
points to the right of the middle of the line, and 5 points above it:

line; arrow up from middle plus (20,5);

There is one further positioning feature that is useful for horizontal or vertical lines. It allows the end
of such a line to be aligned with a given point, which is often the easiest way to describe certain kinds
of drawing:

BOXA: box "A";
line down 5; arc; arrow right 10; box "B";
line up align centre of BOXA;
arrow to right of BOXA;

A

B

Thealign option is used in place ofto; it defines a position, but only one of its coordinates is used as
a coordinate of the end of the line. In the example above, a vertical line was specified, and so only the
vertical coordinate of ‘centre of BOXA ’ was used.

Aspic pictures are best specified as a sequence of shapes whose positions are inter-related. This makes
the pictures easy to adjust as they are being created, and also easy to change subsequently. However,
many pictures contain shapes that are not connected to other shapes in the picture. Aspic does allow
absolute positioning for shapes, but it is often more useful to position these shapes in relation to the
others. This can be done usinginvisible lines, boxes, and arcs. If you useiline, ibox, andiarc instead
of line, box, and arc, the relevant lines are not drawn. There are also icircle and iellipse commands.

box "A"; iline right 30 down 10; box "B";
ibox width 150 "iboxes are helpful" "for centring text";

A
B iboxes are helpful

for centring text

The shapes in the examples shown so far have all been just outlines, but Aspic also contains facilities
for causing closed shapes to be filled with colour or shaded with grey. The commands that define
closed shapes (box, circle, andellipse) can be specified with afilled option. If it is followed by one
number, that specifies a grey level. Otherwise, it must be followed by three numbers that specify a
colour in terms of red, green, and blue levels. The numbers are separated by commas and/or spaces.
In all cases, the numbers lie between 0 and 1. For example:

box filled 0.5; circle filled 1 0 0;

7 Simple Aspic examples (2)

In this example, visible closed shapes are used, so their outlines are drawn. If an invisible shape is
filled, no outline is drawn. Arbitrary shapes can be filled by specifying theshapefilledoption with the
same colour or greylevel value on a sequence of lines and/or curves. The end of the shape is marked
by an item with a differentshapefilled value (or the end of the input). The shape is automatically
closed, if necessary, by an invisible straight edge from the endpoint to the startpoint. For example:

line shapefilled 0.5; arc shapefilled 0.5;

Sometimes it is necessary to supply a dummy item with a differentshapefilledvalue to terminate one
shape, when another that is to be filled with the same colour follows immediately afterwards. A line
of zero length can be used for this. For example:

iline right shapefilled 0.5;
iline down shapefilled 0.5;
line left 0;
iline down left shapefilled 0.5;
iline right shapefilled 0.5;

Without the dummy, zero-length line, the result is:

iline right shapefilled 0.5;
iline down shapefilled 0.5;
iline down left shapefilled 0.5;
iline right shapefilled 0.5;

When a long sequence of commands all have the sameshapefilled value, you can save typing by
using theshapefill command to set a default (see chapter 15). Filling a shape obliterates items that are
‘beneath’ it. To make it easy to specify which filled shapes are ‘above’ others, there is alevel option
that can be used on any drawing command. The default level is zero; items with a higher value are
drawn ‘above’ (later), whereas items with a lower (negative) level are drawn ‘below’ (earlier). The
order in which the items are defined does not matter. For example:

A: circle filled 0.5;
line right from centre of A level 1;
line left from centre of A level -1;

Aspic can be requested to draw a frame round any picture, by means of theboundingbox command.
This is followed by one dimension, which specifies the space to be left between the bounding box of

8 Simple Aspic examples (2)

the picture and the frame. In this example the bounding box of the picture is determined by the
invisible boxes that contain the text:

boundingbox 10; ibox "first"; arcarrow; ibox "second";

first

second

This chapter has introduced many, but not all, of the features of Aspic. The remaining chapters
specify the form of the input more rigorously, and list each command, together with its options.

9 Simple Aspic examples (2)

3. General operation of Aspic

Aspic processes its input in order, interpreting commands that are instructions for moving about on
the plane and causing shapes to be drawn and text to be printed. There are many parameters for
controlling the size and style of the shapes that are drawn; all of them have defaults, and most of these
can be altered. Aspic builds up data structures in main memory that represent the final image. When it
reaches the end of the input file, it outputs a description of the picture in the appropriate output
language.

For PostScript output, the units of length used by Aspic are printers’points, of which there are 72 to
an inch. For SVG output, the units are interpreted by the SVG processor, and on screen displays, they
are often taken as pixels.

Aspic distinguishes between closed and open shapes. The closed shapes are boxes, circles, and
ellipses, and the open shapes are lines and circular arcs. There are default sizes for everything, and
text strings may be associated with each shape. Unless explicitly positioned, each shape is placed
adjacent to its predecessor, taking note of thecurrent direction, whose default is to the right. For
example, the sequence:

box; arrow; box;

places the three items in a horizontal row. There are commands to change the current direction, and,
for the drawing commands, options to override it for individual items.

Only very simple pictures can be drawn as a series of shapes in which each shape is positioned
relative to its predecessor. Aspic allows shapes to be labelled so that branches in the sequence of
shapes may be constructed, and cross-references between different parts of the picture may be
expressed. The previous chapter contains several examples.

3.1 Position of the coordinate origin
It is possible to specify absolute positions on the drawing plane, but it is better to describe a picture in
terms of relative positions between the shapes that comprise it, because such a description is much
easier to adjust while you are creating the picture. If the first item in a picture is specified without an
absolute position – this is normally the case – it is positioned as follows:

• A closed shape is placed with its centre at the origin.

• A straight line starts at the origin.

• A circular arc is placed with the centre of the arc at the origin.

However, for most pictures, it is not necessary to worry about absolute coordinates or the position of
the origin.

3.2 The bounding box
Aspic computes a bounding box for the entire picture, and arranges that the bottom left of the
bounding box is positioned at the bottom of the picture’s space on the output page. This means that
the origin is not necessarily at the bottom left of the final picture. The coordinates of the bounding
box are included in the output file and are used by programs that process it to determine the size of
the image.

Invisible items that are not part of the boundary of a filled shape, and which have no associated text,
are ignored when Aspic is computing the bounding box. The idea is that such items are assumed to be
used for positioning purposes only. Occasionally you may want an invisible item to be included in the
bounding box calculation. You can do this by providing it with an empty text string.

Because Aspic does not process text strings itself, it can only guess the size of a string when comput-
ing the bounding box. This matters only when a string extends beyond the box defined by the graphic
shapes. A string’s width is guessed as one half the font size times the number of characters in the
string.

10 General operation of Aspic (3)

4. Aspic input

Aspic input consists of a sequence of commands, each of which must be terminated by a semicolon.
Newlines and other white space may appear between the components of a command in the usual way.
If a sharp (or ‘hash’) character (#) is encountered when a command is expected, the remainder of the
input line is ignored. This provides a facility for including comments in Aspic input. Each input line
is processed for variable substitutions before any other processing takes place (see chapter 5 below).

4.1 Command format
An Aspic command consists of four components:

label command options strings
A: box dashed width 100 "first" "second";

The case of letters is significant in all the components. Only the command name is mandatory.

(1) Commands that define lines or closed shapes may start with one or more labels, each terminated
by a colon. A label consists of a sequence of letters and digits, starting with a letter. Upper case
letters are commonly used in labels as it makes them stand out. Other commands may not be
labelled.

(2) All commands contain a command name.

(3) Many commands have optional option specifications that follow the command name. Each
option consists of a keyword, possibly followed by a value. They may appear in any order.

(4) Following the options, on commands that define lines or closed shapes, and on thetext com-
mand, there may be any number of text strings, each enclosed in double quotes. The double-
quote character itself may be included by doubling. There are some options that can follow a
text string; these are described in chapter 7. The strings specify text that is to be output at an
appropriate position relative to the item that is drawn (thetext command in effect draws a null
item). Details of text positioning are given below with the commands for each type of item.
Strings may not extend over line boundaries in the input.

Strings are interpreted as a sequence of Unicode characters. The inclusion of characters by name and
by number is supported. Details of how the sequence of input bytes is decoded are given in section
12.4.

Aspic does no typographic processing of strings. This means that any string-specific processing, such
as measuring the string in order to centre it, has to take place in the backend processor. In PostScript
output, PostScript operators are used to do this. In SVG output, an appropriate setting of thetext-
anchor attribute is generated.

4.2 File inclusion
The include command can be used to insert the contents of a given file into the sequence of Aspic
commands. This can be used, for example, to include a standard header file (which might define fonts
or give names to colours) in a number of different pictures. The command name is followed by a file
name, which is not quoted. For example:

include /home/me/MyAspicHeader;

If include appears inside a macro (see chapter 6), it is evaluated every time the macro is called, so can
be used to include different files on different occasions. Included files may contain further inclusions.

11 Aspic input (4)

5. Aspic variables

Aspic supports simple variables, which can be used to save repetition in the input. This feature can,
however, be disabled by use of the-nv command line option. If you are not using Aspic variables, but
are making use of dollar ($) characters in strings, you should use-nv, because otherwise the dollars
will be misinterpreted by Aspic.

When variables are not disabled, a dollar character in an input line introduces a variable substitution.
There is, however, one exception: the special sequence&$ that is used in Aspic macros – see chapter
6. In all other cases, a dollar character must either be followed by another dollar (indicating a single
literal dollar character), or be followed by a variable name, optionally enclosed in brace (curly
bracket) characters. Variable names start with a letter and contain letters and digits. Braces are
required if the character that follows the variable name is a letter or a digit.

When each input line is read, the values of any variables that are mentioned are substituted before any
other processing takes place. A variable must be defined before it is used. The contents of a macro
(see chapter 6) arenot reprocessed for variable substitutions when the macro is called. (They are, of
course, processed for substitutions of the macro’s arguments.)

Variables are given values by means of theset command, which is followed by a variable name
(without a dollar) and a string value. The value of a variable can be changed as many times as you
like during the course of a picture description. For example, this command defines the variablered to
contain the three colour values for the colour red:

set red "1,0,0";

Later in the input file, the variable could be used like this:

box filled $red;

Special variables

At the start of an Aspic run, the variable$date is initialized to contain the date and time, and the
variables$creator and$title are each set to the string ‘Unknown’. These three variables are used to
create comments at the start of PostScript and SGV output, but otherwise they are treated like any
other variable, and you can change them as required. For example, you might like to set$date to the
date on which the picture was defined.

12 Aspic variables (5)

6. Aspic macros

To save a lot of command repetition, Aspic contains a simple macro facility that allows you to define
compound commands. A macro is defined by the commandmacro, which is followed by a name and
a macro body. Macro names must not be the same as the names of inbuilt commands. The body
consistseither of all the following text up to the first non-quoted semicolon,or, if the first character
after the name is an opening brace, all the text up to the next non-quoted closing brace, which must be
followed by a semicolon. For example:

macro bigbox box width 100 depth 100;
macro box2 { box; box; };

A macro definition may extend over more than one line. Variables are substituted into the contents of
a macro when it is defined; there is no re-substitution when the macro is called. If you need such a
facility, it can be obtained by passing variables as arguments to macro calls.

Macros are called by using their names as command names. They can be called with arguments,
which are treated as character strings. White space is used to delimit macro arguments, unless they are
enclosed in either single or double quotes. If double quotes are used, they are retained when the
contents of an argument are substituted into the macro body.

Macro arguments are referenced in the macro body by items of the form&1, &2, etc. These refer-
ences are replaced by the actual argument values each time the macro is called. If the character& is
required for another purpose in a macro body, it must be doubled. If the special string&$ appears in a
macro body, it is replaced by a sequence number that is incremented for each macro called. This can
be used to generate unique labels for shapes that are drawn as a result of macro calls.

The following example starts with the definition of a macro that draws a box containing text given as
one or two arguments, with two lines attached to it. This macro is then used to generate an array of
boxes. Because Aspic allows multiple labels on shapes, these compound items can themselves be
labelled, as shown in this example:

macro item {
 B&$: box &1 &2; line down;
 line right 20 from right of B&$;
 };

item "first" "second";
MID: item "third";
item "fourth" "fifth";
arrow up 20 from MID;

first
second third fourth

fifth

Note the use of&$ to generate a unique label within the macro. Because the macro was not defined
with double quotes surrounding the argument references, double quotes had to be used when calling it
in order to supply strings to thebox command. If the quotes had been present in the definition, they
could not be have been used in the calls, but single quotes could have been used if the arguments
contained spaces.

If an argument that has not been supplied is referenced, nothing is substituted; thus the second call of
item above expands into a call tobox with only a single string argument. If too many arguments are
supplied, the surplus ones are left in the input following the substituted text.

13 Aspic macros (6)

It is not necessary to include a semicolon before a terminating brace when defining a macro. If the
semicolon is present, it is included in the replacement text when the macro is called. Sometimes it is
useful to be able to set up a macro that generates part of a command, so that additional options can be
added on each call. This can be done by omitting the terminating semicolon. In this example, any text
following the macro name is added to the command:

macro slotbox { box width 200 depth 20 };
slotbox dashed "text for slotbox";

text for slotbox

When such additional text is required, and also not all the arguments of a macro are to be supplied,
the vertical bar character can be used to mark the end of the arguments. For example:

macro dashbox { box dashed &1 &2; arrow };
dashbox "first" "second";
dashbox "third" | "fourth";

first
second third fourth

In the first call, the two strings are taken as arguments of the macro; in the second call, the second
string is added onto the end of the replacement text, and therefore goes with the arrow command.

14 Aspic macros (6)

7. Types of value used in commands

Unless explicitly stated to be an integer, a number may always be specified with an optional decimal
point and fractional part. Negative numbers are preceded by a minus sign. Non-integer numbers are
held in a fixed-point format to three decimal places. In the descriptions of the commands that follow,
the following types of value are used:

7.1 <angle>
A non-negative number, specifying an angle in degrees.

7.2 <boxpoint>
One of the phrasestop, bottom, left, right, centre, bottom left, bottom right, top left, or top right. The
first four refer to the midpoints of the respective sides of a box; the last four refer to the corners.

7.3 <colour>
Three numbers in the range 0.0 to 1.0, separated by spaces and/or commas. They specify the colour
components for red, green, and blue, respectively.

7.4 <greylevel>
A number in the range 0.0 to 1.0, where 0.0 is black and 1.0 is white.

7.5 <integer>
A positive or negative integer.

7.6 <label>
A label that identifies an existing drawing item, that is, one whose definition falls earlier in the input
file.

7.7 <length>
A non-negative number, specifying a length in points.

7.8 <position>
A <position> identifies a point in the plane. It is either an absolute position, specified as a pair of x-y
coordinates, separated by a comma and enclosed in parentheses, or a relative position, specified as
follows:

[<fraction>] <point> [of <label>] [plus <vector>]

where all but <point> are optional. The position is computed relative to the object whose <label> is
given, or if no <label> is mentioned, relative the previous object.

• If the referenced object is a box, circle, or ellipse, then <point> must be a <boxpoint>. The ‘corner’
points of a circle or ellipse are the intersections of the shape with the diagonals of the bounding
box.

• If the referenced object is an arc or a line, then <point> is one of the wordsstart, end, or middle.
These refer to positions along the line or arc. In addition, for an arc,centre, meaning the centre of
the circle of which the arc is part, may be specified.

<fraction> is a number between 0.0 and 1.0, specified either as a decimal fraction (for example, 0.5)
or as two numbers (usually, but not necessarily integers) separated by a slash (for example, 1/3). It

15 Types of value used in commands (7)

specifies a position part-way along a straight line or circular arc. If <fraction> is present, there are
some additional constraints on <point>:

• If the referenced object is closed, then <point> must be one oftop, bottom, left, or right, and the
line to which <fraction> refers is the appropriate side of the bounding box of the object. The
fraction is measured from the left of horizontal lines, and from the bottom of vertical lines.

• If the referenced object is not closed, then <point> must be one ofstart or end– the fraction is then
taken from that end of the line or arc.

In effect, the presence of <fraction> changes the meaning oftop, bottom, left, or right as a <point>.
With no <fraction>, these words refer to the midpoints of the respective sides of the bounding box;
when <fraction> is present, they refer to the sides themselves.

The final optional component of a <position> is the wordplus followed by a <vector>, which is two
numbers separated by a comma and enclosed in parentheses. It specifies a Cartesian adjustment to
the position defined by the remainder of the <position>. Here are some examples of <position>
specifications:

(45,67)
top
top plus (10,0)
centre of A
bottom right of B plus (0,-5)
1/3 top of C
middle
end of line1
0.25 start of line3 plus (0,7)

7.9 <text>
Many command specifications end with <text>, without an associated keyword. This represents any
number of items, each of the following form: a string enclosed in double quotes (with doubling for
any double quotes within the string), followed optionally by a <vector> (as described above in the
definition of <position>) and one of/l, /r , or /c. There may also be a slash followed by a font number,
and/or a slash followed by three comma-separated numbers that represent the red, green, and blue
components of a colour. If present, the <vector> must come first. For example:

"the quick brown fox"
"the quick (font 2)"/2 "brown fox (font 5)"/5
"move this up"(0,20)
"justify right"/r
"move left and centre (font 3)"(-20,0)/c/3
"coloured"/1,0.5,0.4

The presence of a <vector> causes the position at which the string is printed to be modified by the
value of the <vector>. The /l, /r , and/c options specify left, right, or centre justification respectively.
The default justification depends on the shape with which the string is associated, and is documented
below.

If a string is followed by a slash and a single number, that number specifies a font. A default font is
provided, and thebindfont command can be used to define additional fonts. The default font is
number zero, and is a Times-Roman 12-point font. Thesetfont command can be used to change the
default font. For further details of these commands, see chapter 12, and for details of character codes,
see section 12.4.

A slash followed by three comma-separated numbers specifies a colour for the text. At present, this is
supported only in PostScript output. For other output formats, colour specifications for text are
ignored.

16 Types of value used in commands (7)

8. Drawing objects and text

All the commands that cause something to be drawn and/or text to be output are described in this
chapter. Each command is summarised by listing its options and the type of value that must follow
each option keyword, where relevant. A vertical bar is used to separate alternative kinds of value.
Some combinations of options are mutually exclusive, and these are noted in the description of each
command below.

When options are omitted, default values are used. There are separate sets of defaults for boxes,
circles, ellipses, and lines. Many of these defaults can be changed by the commands that are described
in chapter 15 (Changing environment parameters).

The thickness, colour, andgreynessoptions are common to all these commands, with the exception
of text. The first specifies the thickness of lines that are drawn. Their colour is specified either by
colour, which must be followed by three numbers (for red, blue, and green components), or by
greyness, which must be followed by a single number. This is a shorthand forcolour followed by
three identical numbers. Colour numbers lie in the range 0.0. to 1.0 inclusive. They specify the
amount of colour to be used. In the case ofgreyness, a value of 0.0 is black and 1.0 is white. If no
colour option is present, default values are used.

The level option is common to all these commands. It is useful when filled shapes are being drawn,
because filling a shape obliterates items that are drawn ‘below’ it. The default level is zero; items on
levels greater than zero are drawn ‘above’ and items with levels less than zero are drawn ‘below’. The
default can be changed by the level command (see chapter 15).

Many of the commands also havefilled and shapefilled options. For closed shapes (box, circle,
ellipse), filled specifies a colour with which to fill the shape. It can be followed either by three
numbers to specify red, green, and blue components, or by a single number, to specify a grey level.
For lines or arcs that start or end with arrowheads,filled specifies the colour with which the arrow-
head is filled.

The shapefilled option also takes either one or three numbers as its argument. It is available on
commands for drawing lines and arcs. A sequence of such commands with the sameshapefilled
arguments is interpreted as a closed shape that is to be filled with the appropriate colour. If the lines
do not define a closed shape, an invisible straight line from the end to the start bounds the area that is
filled. If one closed shape immediately follows another of the same colour, you may need to insert a
dummy command without ashapefilledoption between them, in order to terminate the first shape. A
line of length zero can be used for this.

All these command specifications end with <text>, without an associated keyword. The keyworded
options can be specified in any order, but text strings must always come last.

8.1 arc
angle <angle>
clockwise
colour <colour>
dashed
down
depth <length>
from <position> | <label>
greyness <greylevel>
left
level <integer>
radius <length>
right
shapefilled <colour> | <greylevel>
thickness <length>
to <position>
up

17 Drawing objects and text (8)

via <position>
<text>

A circular arc is drawn in an anti-clockwise direction from its starting point to its ending point, unless
the clockwise option is present, in which case the arc is drawn clockwise. The position, size, and
orientation of an arc may be specified in one of four different ways:

(1) If neitherfrom nor to is specified, the arc is positioned according to the previously drawn shape.
Thedepth andvia options may not be given. The user may supply either or both of a radius and
an angle. If no radius is supplied, the default arc radius is used; if no angle is supplied, an arc of
90 degrees is drawn.

The initial direction of the arc can be specified byup, down, left, or right . If none of these are
present, and the previous item was a line or arc, the new arc starts by continuing in the same
direction. When an arc follows a closed shape (box, circle, or ellipse), the current direction is
used. The direction determines the position on the closed shape from which the arc starts (up
starts from the middle of the top of a box, and so on). If the first item in the input is an arc
without an explicit direction, it is drawn upwards.

(2) If from is supplied withoutto, either or both of a radius and an angle may be supplied. If no
radius is supplied, the default arc radius is used; if no angle is supplied, an arc of 90 degrees is
drawn. Thedepth and via options may not be given. If the initial direction of the arc is not
specified, the current direction is used.

(3) If to is given withoutfrom , a starting point is determined from the previous shape, and then the
action is as described in the following paragraph. If the previous shape is a line or arc, its end
point is used; otherwise the direction (explicit or implicit) is used to decide on which side of the
bounding box of the previous closed shape to place the starting point, but not for any other
purpose. The midpoint of the appropriate side is used.

(4) If both from andto are given (or ifto is given andfrom is determined from the previous shape
as just described), there are four mutually exclusive ways in which the size of the arc can be
specified:

(a) Theradius option can be used to give an explicit radius; this must not be less than half the
distance between the end points.

(b) The angle option can be used to specify the angle subtended at the centre of the arc.

(c) The depth option can be used to specify the distance between the midpoint of the line
joining the end points and the midpoint of the arc. If thedepth option specifies a distance
that is more than half the distance between the end points, an arc of more than 180 degrees
is drawn.

(d) Thevia option can be used to specify a third point through which the arc is to pass. This
point must not be be on the line joining the end points, and it must also be on the
appropriate side of that line. If it is not suitable, an error message is output.

If none of these options is given, an arc that subtends 90 degrees at its centre is drawn. If more
than one of these options is given, an error message is generated, and all but one are ignored.

If the from option specifies the label of a closed shape without further qualification, the actual starting
point on that shape is determined by the initial direction of the arc.

Texts are printed near the midpoint of the arc, and are left-justified by default. The following example
illustrates various types of arc:

A: arc "A";
B: arc clockwise radius 20 angle 180 "B";
C: arc dashed from start of A to end of B angle 190 "C";
arc clockwise dashed from start of A to end of A radius 75 "D";
arc to start depth 30 "E";
arc clockwise to middle of C via middle of A "F";

18 Drawing objects and text (8)

A

B C

D

E

F

8.2 arcarrow
angle <angle>
back
both
clockwise
colour <colour>
dashed
depth <length>
down
filled <colour> | <greylevel>
from <position> | <label>
greyness <greylevel>
left
level <integer>
radius <length>
right
shapefilled <colour> | <greylevel>
thickness <length>
to <position>
up
via <position>

<text>

The options forarcarrow are exactly as forarc, with the addition ofboth (which specifies a double-
headed arrow) andback (which specifies a backwards-pointing arrow). If neither is given, an arrow-
head is drawn at the end of the arc.

Arrowheads are drawn within the length of the arc so if, for example, a 90-degree arc is drawn from
absolute angle zero, the arrow head is not horizontal:

arcarrow;

A horizontal arrowhead can be drawn by adding a short linear arrow afterwards, but note that this
extends beyond the end of the arc:

arc; arrow left 10;

8.3 arrow
align <position>
back
both
colour <colour>

19 Drawing objects and text (8)

dashed
down <length>
filled <colour> | <greylevel>
from <position> | <label>
greyness <greylevel>
left <length>
level <integer>
right <length>
shapefilled <colour> | <greylevel>
thickness <length>
to <position>
up <length>

<text>

The arrow command has exactly the same options asline (see section 8.12 below), but with the
addition offilled (specifying a filled arrowhead),both (specifying a double-headed arrow), andback
(specifying a backwards-pointing arrow). If neitherboth nor back is given, an arrowhead is drawn at
the end of the line.

8.4 box
at <position>
colour <colour>
dashed
depth <length>
filled <colour> | <greylevel>
greyness <greylevel>
level <integer>
join <boxpoint> to <position> | to <label>
thickness <length>
width <length>

<text>

This command causes a rectangular closed box to be drawn. Thewidth anddepth options specify the
horizontal and vertical dimensions of the box. Defaults are used if either of them is omitted.

Theat option specifies the position of the centre of the box; if not given, the centre point is computed
by reference to the previous shape. In the absence of ajoin option, if the previous shape was a line or
arc, the midpoint of an appropriate side of the box is joined onto its end; if it was a closed shape, the
side which is abutted depends on the current direction. If there was no previous shape, the centre is
placed at the origin of the coordinate system.

The join option specifies how the box is to be joined to a previous shape, and is mutually exclusive
with at. This option takes three different forms:

(1) If <position> is given, the given point on the box is placed at the given position. For example:

box join bottom right to centre of C;
box join top left to start plus (10,15);

As with all <positions>, if ‘of < label>’ is omitted, the preceding shape is implied.

(2) If no <position> is given, and the previous shape (or the named shape if ‘to <label>’ is present)
is a closed shape, the given point is joined to the complementary point of the referenced shape.
For example:

box join top;
box join top left to A;

(3) If no <position> is given, and the previous shape (or the named shape if ‘to <label>’ is present)
is not a closed shape, the given point is joined to its end.

20 Drawing objects and text (8)

Note that if boxes of different dimensions are joined by naming their edges, the middle points of the
edges are made coincident:

box "A"; box depth 50 "B";
box width 50 join top "C";

A B

C

Any text items are centred at the centre of the box. Because Aspic does not process the text itself, it
cannot tell whether the text will actually fit into the box.

8.5 circle
at <position>
colour <colour>
dashed
filled <colour> | <greylevel>
greyness <greylevel>
level <integer>
join <boxpoint> to <position> | to <label>
radius <length>
thickness <length>

<text>

The at option specifies the position of the centre of the circle; it is mutually exclusive with thejoin
option, which specifies how the circle is to be joined to the previous shape, exactly as for boxes (see
above). Text items are centred at the centre of the circle.

8.6 ellipse
at <position>
colour <colour>
dashed
depth <length>
filled <colour> | <greylevel>
greyness <greylevel>
level <integer>
join <boxpoint> to <position> | to <label>
thickness <length>
width <length>

<text>

The options forellipseare the same as forcircle, except thatradius is replaced bywidth anddepth,
which specify the lengths of the horizontal and vertical axes. That is, they specify the size of the
bounding box.

8.7 iarc
<as arc>

The iarc command defines an invisible arc. Its options are the same as for thearc command.
Although the arc is not actually drawn, any text supplied is printed, and the invisible arc can form part
of a shape that is filled. The arc counts towards the bounding box only if there is text, or if it is part of
a filled shape.

21 Drawing objects and text (8)

8.8 ibox
<as box>

The ibox command defines an invisible box. Its options are the same as for thebox command.
Although the box is not actually drawn, any text supplied is printed, and the shape is filled iffilled is
specified. The box counts towards the bounding box only if there is text, or if it is filled.

8.9 icircle
<as circle>

The icircle command defines an invisible circle. Its options are the same as for thecircle command.
Although the circle is not actually drawn, any text supplied is printed, and the shape is filled iffilled
is specified. The circle counts towards the bounding box only if there is text, or if it is filled.

8.10 iellipse
<as ellipse>

The iellipse command defines an invisible ellipse. Its options are the same as for theellipse com-
mand. Although the ellipse is not actually drawn, any text supplied is printed, and the shape is filled if
filled is specified. The ellipse counts towards the bounding box only if there is text, or if it is filled.

8.11 iline
<as line>

The iline command defines an invisible line. Its options are the same as for theline command.
Although the line is not actually drawn, any text supplied is printed, and the invisible line can form
part of a shape that is filled. The line counts towards the bounding box only if there is text, or if it is
part of a filled shape.

8.12 line
align <position>
colour <colour>
dashed
down <length>
from <position> | <label>
greyness <greylevel>
left <length>
level <integer>
right <length>
shapefilled <colour> | <greylevel>
thickness <length>
to <position>
up <length>

<text>

This command draws a straight line. The start is given by thefrom option; if it specifies a label only,
the starting point on the referenced shape is its end point if it is a line or arc, or is determined by the
direction of the line otherwise. For example, a line to the right from a box starts at the midpoint of the
right-hand edge. The end point of the line can be specified in three different ways:

(1) A pair of horizontal and vertical distances (that is, relative Cartesian coordinates) can be given.
If a direction is given without a length, the current standard length for that direction is used.
Thus, the following are all valid:

line;
line right;
line up right;

22 Drawing objects and text (8)

line down 20 left;
line down 40 right 60;

The first of these draws a line of the current length in the current direction.

(2) The to option can be used to define the endpoint by reference to the previous or some other
shape. For example:

box; line from bottom right to 0.25 top;

(3) If the line is horizontal or vertical, thealign option can be used. (It is ignored if the line is not
horizontal or vertical.) In each case, only the vertical or horizontal coordinate of the <position>
specified by align is used, as appropriate. For example:

A: box "A";
L: line right;
B: box "B";
 line down from bottom of A;
 line right align middle of L;
 line up align right of A;

A B

As always, a reference to an unqualified box edge implies the midpoint of that edge.

For a horizontal line, text is positioned at the midpoint of the line, centred by default. If there is more
than one string, they are positioned both above and below the line. For non-horizontal lines, text is
left-justified (by default) close to the midpoint of the line.

8.13 text
at <position>
level <integer>

<text>

This command provides a means of printing text without drawing a graphic shape. The text is
centre-justified by default. If no position is given, the text is positioned with reference to the previ-
ously drawn shape. If it was a closed shape, its centre is used; if it was a line, its middle point is used;
if it was an arc, the centre of the arc is used.

String options can be used to make fine adjustments to the position of the text. For example, if text is
printed to the right of a horizontal line, it should normally be specified as left-justified.

line; text at end "ABC";
iline right 20;
line; text at end "ABC"/l;

ABC ABC

In the first of these two examples, the default centre-justification has caused the text to print on top of
the line.

23 Drawing objects and text (8)

9. Filled shapes

Boxes, circles, and ellipses are filled when they have thefilled option set, or if theboxfill , circlefill , or
ellipsefill commands have been used to set filling as a default (see chapter 15). If the shape is
invisible, no outline is drawn, and only the filling is shown. Otherwise, the outline is drawn in the
line-drawing colour. For example:

box greyness 0.5 filled 0.8; iline right 10; ibox filled 0.8;

A sequence of lines and arcs with the sameshapefilled values is turned into a closed outline (if
necessary) and filled. The lines and arcs themselves are drawn as normal, unless they are invisible.
The automatically supplied line that closes such a shape is not drawn. A dummy command such as:

line left 0;

is sometimes needed to separate two successive shapes that have the same filling parameters.

It is possible to set ashapefilledvalue as a default, to save having to repeat it for all the different
constituents of a shape. The ability to save and restore the environment (see chapter 14) can be
helpful here:

push; shapefill 0.9 0.5 0.1;
arc; arc; line left; line down 10;
line right; line right; line up 10;
pop;

Arrowheads on lines and arcs are filled if thefilled option is set on the appropriate drawing command.
Alternatively, the arrowfill command can be used to specify a default filling colour (see chapter 14).

The concept of ‘levels’ is important when filled shapes are being drawn, because filling a shape
obliterates anything that is underneath it, even if the filling colour is lighter than what was there
before. It is like using opaque paint. By specifying different levels for different components of a
drawing, you can control the order in which they are output, and therefore which parts are obliterated
by other parts. The default level is zero; items on higher levels are output later (‘above’), whereas
items on lower levels are output earlier (‘below’). Items at the same level are output in the order in
which they are defined. Consider this example:

box filled 0.5; box at centre plus (10,10) filled 0.5;
iline right 10;
box filled 0.5; box at centre plus (10,10) filled 0.5 level -1;

The second box is ‘above’ the first box, but because of thelevel specification, the fourth box is
‘below’ the third box. A default level can be set by means of the level command (see chapter 15).

24 Filled shapes (9)

10. Altering the ‘last’ item

Occasionally it is useful to be able to change which shape is considered to be the previous shape
when the next shape is drawn. Thegoto command, which is followed by a label, is used to do this. It
can be useful in macros. Consider a macro that draws a box with diagonals. When this macro is
called, you may want subsequent shapes to be positioned relative to the box, not to the diagonal lines.
This example shows how this can be done:

macro diag {
A&$: box;
line from top right to bottom left;
line from top left of A&$ to bottom right of A&$;
goto A&$; };

diag; arrow; diag;

The finalgoto in the macro causes any subsequent shapes to be positioned with reference to the box.
Without the finalgoto in the macro, the ‘last item’ after a macro call would be the second diagonal
line.

25 Altering the ‘last’ item (10)

11. Changing the current direction

The current direction defaults to ‘right’. It can be changed by the commandsup, down, left, and
right , which have no arguments. The current direction is used in the following circumstances:

(1) When drawing a line, if no direction is specified;

(2) When drawing an arc, if no direction is specified and a start point is given without an end point;

(3) When drawing an arc after a closed shape, if neither a direction nor a start point is given.

(4) When one closed shape follows another, to determine their relative positions if nojoin option is
given;

Note that the current direction isnot used when a closed shape follows a line or arc; the position of
the closed shape in this case is determined by the direction of the end of the line or arc. For example,

right; box "A"; arc "1"; box "B";
down; arc "2"; box "C";

A
1

B

2
C

The initial direction of the arcs in this example is determined by the current direction, but the boxes
that follow them are positioned with reference to the ending direction of the arc. (This can be changed
by using the join option of the box command.)

26 Changing the current direction (11)

12. Font control and character coding

Text is output by default in a 12-point Times-Roman font, though certain special characters in
PostScript output may use other fonts, as described in section 12.5 below. Additional fonts can be
specified by the bindfont command, and individual strings can be printed in any of the bound fonts.

12.1 The bindfont command
The bindfont command is used to define additional fonts, at specified sizes. Themagnify command
(see section13.2) does not affect the size of text. The syntax of bindfont is as follows:

bindfont <number> <fontname>

For example:

bindfont 1 "Times-Italic" 12;
bindfont 2 "Times-Bold" 16;

The font number must be greater than zero (the default font has the number zero). Once a font has
been bound, it may be referenced in asetfont command to make it the default font, or it may be
specified for an individual text string. For example:

setfont 2; box "this is font 2" "this is font 1"/1;

For PostScript output, the font name is used verbatim. For SVG output, if the name contains a
hyphen, it is split into two parts. The first part (or the whole name if there is no hyphen) is output as
the font-family parameter for text strings. The second part is used to control thefont-style and
font-weight parameters. Aspic recognizes the suffixes ‘Italic’, ‘Bold’, and ‘BoldItalic’.

12.2 The setfont command
The setfont command changes the default font for subsequent text strings. It must be followed by a
non-negative font number.

12.3 The textdepth and fontdepth commands
When multiple text items are specified with a drawing command, they are output one below the other.
The default vertical separation is computed from the sizes of the fonts. This can be increased (but not
decreased) by thetextdepth command, which sets a minimum vertical separation for subsequent
items.

Aspic also needs to know the approximate height of letters when positioning text vertically, for
example, when centring a single line of text within a box. Since it does not itself do any text
processing, it guesses a height from the font size. This can be increased (but not decreased) by the
fontdepth command, though this should rarely be needed.

12.4 Input character encoding
Aspic assumes that text strings specify characters in Unicode. Using escapes, it is possible to encode
all possible characters using only ASCII input. Characters may also be encoded as UTF-8 sequences
or (for backwards compatibilty) as single bytes. The input byte sequence is handled as follows:

• Bytes with values less than 128, with the exception of ampersand, are interpreted as single-byte
Unicode code points – these are of course identical to ASCII. If the-tr command line option is
given, the following translations are then performed:

− A single grave accent character (`) is translated to an opening typographic quote (‘) using code
point U+2018.

− Two grave accents in succession are translated to a double typographic opening quote (‘‘) using
code point U+201C.

27 Font control and character coding (12)

− A single quote character (') is translated to a closing typographic quote (’), which is the same as
an apostrophe, using code point U+2019.

− Two single quotes in succession are translated to a double closing typographic quote (’’) using
code point is U+201C.

− Two hyphens in succession are translated to an end-dash (–) using code point U+2013.

If any of the translated characters are required when the-tr option is on, they can be specified
using numerical escapes. It is only the literal characters that are translated.

• If an ampersand character is encountered, the following bytes are inspected:

− An ampersand followed by a sharp (or hash) sign and a sequence of digits terminated by a
semicolon represents the code point defined by the decimal number. For example,©
specifies a copyright symbol.

− An ampersand followed by a sharp (or hash) sign, an x, and a sequence of hexadecimal digits
terminated by a semicolon represents the code point defined by the hexadecimal number. For
example, © is another way of specifying a copyright symbol.

− If an ampersand is followed by a letter and then a sequence of alphanumeric characters termin-
ated by a semicolon, it is treated as a named entity reference. Aspic contains a table of named
entities taken from the DocBook documentation. For example,© is a third way of speci-
fying a copyright symbol.

− If an ampersand is not followed by one of the above forms, or if an entity name is not found in
Aspic’s inbuilt list, the ampersand character is treated as a literal.

• When a byte with a value of 128 or above is encountered, it and the following bytes are inspected
to see if they form a valid UTF-8 sequence. If they do, the code point that it encodes is used. If they
do not, the value of the single byte is taken as the code point. This means that isolated high-value
bytes in an otherwise ASCII source are treated as ISO 8859 characters. Several such bytes in
succession might accidentally form a valid UTF-8 sequence, so Aspic cannot be guaranteed to
handle every possible ISO 8859 input document.

12.5 PostScript output character encoding
PostScript output consists entirely of ASCII characters. In strings that are to be printed, parentheses,
backslashes, and code points greater than 127 are escaped using the normal PostScript backslash
escape mechanism.

Aspic handles fonts that are defined with PostScript’sstandard encodingas their default in a special
way. A PostScript font may contain more than 256 characters, though only 256 are accessible in any
font ‘binding’, via an encoding vector that translates character numbers to names. The default encod-
ing can be changed when the font is bound.

The PostScript standard encoding is not the same as Unicode, and in any case, Aspic needs to access
more than 256 characters in one of these fonts. It does this by binding two versions of a font, and
re-encoding both of them. The first is encoded with the first 256 Unicode code points. The second
is encoded with characters 0–127 corresponding to Unicode code points U+0100 to U+017F and
characters with codes greater than 127 corresponding to those Unicode characters with code points
greater than U+017F that are available in the standard PostScript fonts (for example, typographic
quotes). The use of two fonts is handled automatically.

If a character is not available in a PostScript standardly encoded font, Aspic checks to see if it can be
found in the Symbol or Dingbats fonts. The former contains Greek and mathematical characters, and
the latter contains various special symbols such as✓. If a character is not available in any of these
fonts, it is printed as the currency symbol ¤.

The net effect of this special processing is that, for a PostScript font that is standardly encoded by
default, Unicode code points can be used to print all the characters in that font, as well as characters
in the Symbol and Dingbats fonts. You do not need to set up any separate special fonts.

28 Font control and character coding (12)

If, on the other hand, you specify a PostScript font that does not use the standard encoding by default,
Aspic makes no changes to it. Character values in the range 0–255 will print according to its default
encoding. The behaviour of other character values is undefined.

12.6 SVG output character encoding
SVG output consists entirely of ASCII characters. In strings that are to be printed, angle brackets
and ampersands are converted to the named XML entities> , < , and& , respectively.
Characters whose code points are greater than 127 are output as hexadecimal numerical escapes. For
example, the copyright character is output as © .

29 Font control and character coding (12)

13. Overall Aspic configuration

This chapter describes commands that affect the overall appearance of the picture. These normally
appear at the start of the Aspic input.

13.1 boundingbox
This command requests that Aspic draw a frame round the picture. It must be followed by a length,
specifying the margin width between the actual bounding box of the picture, and the frame. For
example,

boundingbox 20;

If a value of zero is given, the frame that is drawn is the actual bounding box. Because Aspic does not
process text items itself, it has to guess a bounding box for them, and so under some circumstances
the computed bounding box for a picture may not be strictly accurate.

13.2 magnify
This command specifies overall magnification of the graphic items in a picture. It must be followed
by a single number. For example

magnify 0.8;
magnify 1.5;

The magnification may be changed in the middle of an Aspic input sequence; the new value applies to
those shapes that follow. Magnification doesnot apply to text. If smaller or larger text is required,
suitable fonts must be set up and used.

13.3 resolution
This command sets the resolution of the output; it must be followed by a single fixed-point number.
All output dimensions are rounded to this resolution. The default depends on the output style. For
PostScript it is 0.12, which corresponds to 600 dpi; for SVG output it is 0.001, which disables
rounding.

30 Overall Aspic configuration (13)

14. Saving and restoring the environment

The Aspicenvironmentconsists of a number of parameters that control the way items are drawn. They
are listed in the following table, together with their initial values:

arc radius 36.0
arrowhead filling no filling
arrowhead length 10.0
arrowhead width 10.0
box dash parameters 7.0 5.0
box depth 36.0
box edge colour 0.0 0.0 0.0
box edge thickness 0.5
box filling no filling
box width 72.0
circle dash parameters 7.0 5.0
circle edge colour 0.0 0.0 0.0
circle edge thickness 0.4
circle filling no filling
circle radius 36.0
current direction right
ellipse dash parameters 7.0 5.0
ellipse depth 36.0
ellipse edge colour 0.0 0.0 0.0
ellipse edge thickness 0.4
ellipse filling no filling
ellipse width 72.0
level 0
line dash parameters 7.0 5.0
line colour 0.0 0.0 0.0
line horizontal length 72.0
line thickness 0.4
line vertical length 36.0
magnification 1.0
shape filling no filling
text colour 0.0 0.0 0.0
text line depth 12.0
text font 0
text font depth 6.0

Many of these values can be overridden for a single item by the use of options on the drawing
command. There are also commands for dynamically changing these values, so they become the
defaults for commands that do not specify the relevant options. Themagnify command is described
in section 13.2, and commands to change the current direction are described in chapter 11.
Commands to change the remaining values are described in the next chapter.

It is often useful to be able to save the current state of the environment and restore it later. Thepush
andpop commands are provided to do this. Thepush command puts a copy of the current environ-
ment onto a stack, and pop restores the environment from the top item on the stack.

31 Saving and restoring the environment (14)

15. Changing environment parameters

In addition to the commands for changing the current direction and themagnify command, which are
specified above in chapter 11 and section 13.2, respectively, the following commands are provided for
changing the values of environmental parameters. The changed value applies to subsequently drawn
items, and a value may be changed as often as necessary. The entire environment can be saved and
restored by means of the push and pop commands.

Most of these commands take a single numerical argument. The exceptions are those that set dashed
line parameters, and those that specify a colour. The former take two arguments, specifying the length
of dashes and the length of gaps, respectively, and the latter take three arguments, specifying the red,
green, and blue components of the colour.

Setting a greyness value is equivalent to setting a colour with three identical values. Thus, greyness is
specified on a scale from 0.0 to 1.0, with 0.0 being black and 1.0 being white.

arcradius default radius for arcs
arrowfill fill colour for arrowheads
arrowlength length of arrowheads
arrowwidth width of arrowheads
boxcolour colour of box edges
boxdash dash parameters for boxes
boxdepth default depth of boxes
boxfill colour of box interiors
boxgreyness greyness of box edges
boxthickness thickness of box edges
boxwidth default width of boxes
circlecolour colour of circle edges
circledash dash parameters for circles
circlefill colour of circle interiors
circlegreyness greyness of circle edges
circleradius default radius of circles
circlethickness thickness of circle edges
ellipsecolour colour of ellipse edges
ellipsedash dash parameters for ellipses
ellipsedepth default depth of ellipses
ellipsefill colour of ellipse interiors
ellipsegreyness greyness of ellipse edges
ellipsethickness thickness of ellipse edges
ellipsewidth default width of ellipses
fontdepth minimal character depth
hlinelength default horizontal length for lines
level default item level
linecolour colour of lines
linedash dash parameters for lines
linegreyness greyness of lines
linethickness thickness of lines
setfont the current font
shapefill colour for shapes defined by lines/arcs
textcolour colour for text
textdepth minimal vertical text separation
vlinelength default vertical length for lines

Each kind of closed shape has its own set of parameters for controlling the default thickness and
colour of the lines used to draw it, and the appearance of dashed lines. Setting the dash parameters
does not of itself cause dashed lines to be drawn; thedashedoption must be given with the drawing
command.

32 Changing environment parameters (15)

The default thickness, dashedness, and colour of arcs is the same as that for straight lines; hence there
are no separate commands. Line thickness is specified in points. For example:

linethickness 1; linegreyness 0.5;
boxthickness 4; boxgreyness 0.8;
line; box; line;

Those commands that specify filling can be followed either by a single number, to specify a shade of
grey, or by three numbers for a general colour. To turn off filling, a single negative number should be
given. For example:

circlefill 0.5; circle; circlefill 0.8 0.2 0.1; circle;
circlefill -1; circle;

The textdepth parameter controls the minimal vertical separation of multiple text items. For example:

box "one" "two"; textdepth 24; box "three" "four";

one
two

three

four

The fontdepth parameter can be set to the approximate height of letters in the font being printed. It is
used when positioning text vertically, for example, when centring a single line of text within a box.
However, this parameter is used only when it is greater than the depth computed from the size of the
font.

33 Changing environment parameters (15)

16. List of commands

This is a complete list of all Aspic commands, except those that apply only to the legacy SGCAL
support.

arc draw a circular arc
arcarrow draw a circular arc with arrowhead(s)
arcradius set default arc radius
arrow draw a straight line with arrowhead(s)
arrowfill set arrowhead fill colour
arrowlength set length of arrowheads
arrowwidth set width of arrowheads
bindfont bind a new font
boundingbox enclose picture in frame
box draw a box
boxcolour set default colour for boxes
boxdash set dash parameters for boxes
boxdepth set default depth for boxes
boxfill set box fill colour
boxgreyness set default greyness for boxes
boxthickness set default line thickness for boxes
boxwidth set default width for boxes
circle draw a circle
circlecolour set default colour for circles
circledash set dash parameters for circles
circlefill set circle fill colour
circlegreyness set greyness for circles
circleradius set default radius for circles
circlethickness set thickness of lines for circles
down set current direction
ellipse draw an ellipse
ellipsecolour set default colour for ellipses
ellipsedash set dash parameters for ellipses
ellipsedepth set depth of ellipses
ellipsefill set ellipse fill colour
ellipsegreyness set greyness for ellipses
ellipsethickness set line thickness for ellipses
ellipsewidth set width of ellipses
fontdepth set minimal height of letters
goto set named shape as previous
hlinelength set default horizontal line length
iarc draw an invisible arc
ibox draw an invisible box
icircle draw an invisible circle
iellipse draw an invisible ellipse
iline draw an invisible line
include include a file’s contents
left set current direction
level set default level
line draw a line
linecolour set colour for lines (and arcs)
linedash set dash parameters for lines (and arcs)
linegreyness set greyness for lines (and arcs)
linethickness set thickness of lines (and arcs)
magnify magnify or reduce the picture
macro define an Aspic macro
pop restore environment from the stack

34 List of commands (16)

push push environment onto the stack
resolution set output resolution
right set current direction
set set value of variable
setfont set current font
shapefill set drawn shape fill colour
text print text at given position
textcolour set text colour
textdepth set minimal separation of text items
up set current direction
vlinelength set default vertical line length

35 List of commands (16)

17. Using Aspic with SGCAL

SGCAL is a typesetting system which has now mostly been superseded. However, the legacy support
remains in Aspic so that old documents can still be processed. When Aspic is generating SGCAL
output, the default resolution is 0.24, which corresponds to 300 dpi.

Readers of this chapter are assumed to be familiar with SGCAL, which has a facility for calling a
secondary program to process embedded input and returns it as text containing SGCAL markup. As a
simple example, consider the following picture:

input
file SGCAL GCODE

file

ASPIC

This was created by the following SGCAL input lines:

.aspic
 magnify 0.8;
 hlinelength 36;
 box "input" "file"; arrow;
A: box "SGCAL"; arrow;
 box "GCODE" "file";
 arrow both down from A; box "ASPIC";
.endspic

The lines between.aspicand.endspicare written by SGCAL to a temporary file; Aspic is then called
to process this file with the-sgcaloption. It writes its output to a second temporary file which is then
processed by SGCAL. The output from Aspic consists of SGCAL instructions to draw lines and
curves, to fill some of the shapes, and to position text at given positions. The units of length in the
Aspic input are printers’ points.

Any SGCAL macros and SGCAL variable insertions that are encountered in the input lines are
expanded before being written to the temporary file. SGCAL macros can be useful for repeated
sections of input, though Aspic has its own variable and macro facilities as well. However, the use of
Aspic variables is disabled by the.aspic directive because of clash of usage of the dollar character
with many SGCAL flags (and SGCAL variables provide an equivalent facility).

By default, Aspic positions the picture such that the left-hand edge of its bounding box (or frame, if
there is one) is at the left-hand side of the page, taking into account any SGCAL indent that may be in
force. The picture can be positioned in the middle of the page by including thecentre command in
the Aspic input, followed by a value that specifies the current line length. For example:

centre ~~sys.linelength;

The centring length is normally specified as~~sys.linelength , which causes SGCAL to fill in
the current linelength before handing the input to Aspic. However, if an indent is set in SGCAL when
Aspic is called, it will apply to SGCAL’s positioning of the picture, so must be taken into account if
centring is required. A command such as

centre ~~sys.linelength - ~~sys.indent

is needed to achieve centring between the indent and the line length.

Both .aspic and .endspicare in fact standard SGCAL macro directives that make use of SGCAL’s
basiccall/endcall directive pair to call an external program. They call Aspic only when fancy output

36 Using Aspic with SGCAL (17)

is being generated, and ensure that the result is processed within a.display context, is centred
horizontally on the page, and has no indent set. The SGCAL macros are defined as follows:

 .macro aspic
 .display rm
 .if ~~sys.fancy
 .indent 0
 .call aspic -sgcal -nv
 centre ~~sys.linelength;
 .endm

 .macro endspic
 .endcall
 .else
 <<picture omitted>>
 .fi
 .endd
 .endm

The size of the picture is computed by Aspic and passed back to SGCAL so that it can leave enough
vertical space for it. It can be requested, as in this example, to centre the picture in a given line width.
If an SGCAL indent is in force when Aspic is called, it will be applied to the picture.

The lines between.aspicand.endspic(ultimately betweencall andendcall) are subject to SGCAL’s
normal processing for insertions, and so can be passed data from SGCAL variables. However, they
are not processed for any other SGCAL flags. In the.aspic macro, the SGCAL system variable
sys.linelength is used to pass the current line length as part of the first Aspic command.

Calling Aspic from with a.display environment ensures that line filling is disabled and the whole
picture appears on one page. Aspic does not work properly if these conditions are not met.

Aspic assumes that an SGCAL standard style is in force, as it generates output using the standard
SGCAL flags for moving the current point, positioning text, and drawing lines and curves. The
recognition of flags must not be disabled when SGCAL is processing Aspic output. In particular, if
the picture is inside an SGCAL .display, the asis parameter must not be set.

17.1 Font control
Aspic’s font handling cannot be used with SGCAL. However, normal SGCAL flags can be used in
text strings to control font usage because the text strings are passed back unprocessed in the output so
that they can be processed by SGCAL. Therefore, SGCAL flags are recognised within the strings, and
in particular, the font-changing flags can be used:

box "$it{italic}" "$bf{bold}";
line "$chead{big}";
circle "($)24.45";

This example works as shown because the interpretation of dollar characters by Aspic is turned off by
SGCAL’s .aspic macro when it calls Aspic with the-nv option. If you want to use Aspic variables,
you have to redefine the macro not to do this, and then you will need to double all dollar characters in
the Aspic input that are not the start of an Aspic variable.

SGCAL is not a Unicode application. Undefined things will happen if any strings contain characters
with code points greater than 255, and it is best to avoid using non-ASCII characters (use SGCAL
flag sequences instead). Note also that it is necessary to escape characters that are normally escaped
in SGCAL input. For example:

circle "$it{italic @@}";

causes the text ‘italic @’ to be printed in italics inside a circle.

If larger than normal fonts are used with SGCAL, you will probably need to use thetextdepth and
fontdepth commands to adjust the positioning of strings.

37 Using Aspic with SGCAL (17)

17.2 The wait feature
SGCAL can be used to generate files that are displayed as slideshows by thesgpoint command
(which is part of the SGCAL distribution). Sometimes it is helpful to display part of a picture at first,
and the rest later, after a mouse click or keypress. Thewait command inserts an SGCAL.wait
directive into Aspic’s output; this causes a pause point to be generated in the ultimate output that
SGCAL writes.

17.3 The redraw feature
After a use ofwait, it is possible to cause a previously drawn part of the picture to be redrawn,
usually in a different colour. The combination ofwait andredraw therefore has the effect of chang-
ing the colour of an item on the slide. The arguments ofredraw are the name of a previous Aspic
label, usually followed by one of the optionscolour, filled, or shapefilled, all of which are followed
by a colour value.

17.4 Wide bounding boxes
Sometimes, when such a picture is being centred, you may want to draw a bounding box that extends
to the width of the page. For SGCAL output, you can do this by adding the word ‘fullwidth’ to a
boundingbox command. For example:

boundingbox 15 fullwidth;

The top and bottom of the box are positioned according to the margin specification, but the left and
right edges are drawn at the edges of the page, whose width is specified by thecentre command. The
‘fullwidth’ option has no effect for PostScript and SVG output.

38 Using Aspic with SGCAL (17)

	Contents
	1. Introduction to Aspic
	 1.1 The aspic command

	2. Simple Aspic examples
	3. General operation of Aspic
	 3.1 Position of the coordinate origin
	 3.2 The bounding box

	4. Aspic input
	 4.1 Command format
	 4.2 File inclusion

	5. Aspic variables
	6. Aspic macros
	7. Types of value used in commands
	 7.1 <angle>
	 7.2 <boxpoint>
	 7.3 <colour>
	 7.4 <greylevel>
	 7.5 <integer>
	 7.6 <label>
	 7.7 <length>
	 7.8 <position>
	 7.9 <text>

	8. Drawing objects and text
	 8.1 arc
	 8.2 arcarrow
	 8.3 arrow
	 8.4 box
	 8.5 circle
	 8.6 ellipse
	 8.7 iarc
	 8.8 ibox
	 8.9 icircle
	 8.10 iellipse
	 8.11 iline
	 8.12 line
	 8.13 text

	9. Filled shapes
	10. Altering the 'last' item
	11. Changing the current direction
	12. Font control and character coding
	 12.1 The bindfont command
	 12.2 The setfont command
	 12.3 The textdepth and fontdepth commands
	 12.4 Input character encoding
	 12.5 PostScript output character encoding
	 12.6 SVG output character encoding

	13. Overall Aspic configuration
	 13.1 boundingbox
	 13.2 magnify
	 13.3 resolution

	14. Saving and restoring the environment
	15. Changing environment parameters
	16. List of commands
	17. Using Aspic with SGCAL
	 17.1 Font control
	 17.2 The wait feature
	 17.3 The redraw feature
	 17.4 Wide bounding boxes

