
KisSplice
De-novo calling alternative splicing events

from RNA-seq data

User’s guide, version 2.5.3

June 15, 2020

Contents
1 KisSplice, at a glance 2

2 KisSplice software package 2
2.1 CeCILL licence . 2
2.2 Reference . 2
2.3 Forum . 2
2.4 Mailing list . 2
2.5 Requirements . 2
2.6 Installation . 3

3 Usage 3
3.1 Testing KisSplice in a couple of minutes 3
3.2 Common TroubleShooting . 5
3.3 Options . 5
3.4 Counts option . 5
3.5 Paired-end reads . 6

4 I/O 6
4.1 Input . 6
4.2 Output . 7
4.3 Uncoherent Bubbles . 8

5 Performances 9
5.1 Pre-treatment . 9
5.2 Job calibration . 9
5.3 Relative coverage . 9
5.4 Big datasets . 10

6 Further questions 10

1

1 KisSplice, at a glance
KisSplice is dedicated to de-novo calling of alternative splicing events from one or several
RNA-seq datasets. In addition to splicing events, KisSplice detects indels and SNPs. Data
from different conditions can be co-assembled with KisSplice.

2 KisSplice software package

2.1 CeCILL licence

This software is governed by the CeCILL licence. Details are mentioned in the COPYING file.

2.2 Reference

If you use KisSplice in a published work, please cite the following reference:
Sacomoto et al. KISSPLICE: de-novo calling alternative splicing events from RNA-seq data.
BMC Bioinformatics 13, S5 (2012). https://doi.org/10.1186/1471-2105-13-S6-S5

If you use KisSplice, kissplice2reftranscriptome and kissDE, please cite:
Lopez-Maestre et al., SNP calling from RNA-seq data without a reference genome: identifi-
cation, quantification, differential analysis and impact on the protein sequence, Nucleic Acids
Research, Volume 44, Issue 19, 2 November 2016, Page e148

If you use KisSplice, kissplice2refgenome and kissDE, please cite:
Benoit-Pilven et al. Complementarity of assembly-first and mapping-first approaches for
alternative splicing annotation and differential analysis from RNAseq data. Sci Rep 8, 4307
(2018). https://doi.org/10.1038/s41598-018-21770-7

2.3 Forum

If you have questions, please use primarily the biostars forum: www.biostars.org/t/kissplice/

2.4 Mailing list

To be informed about new releases, bugs or updates, please subscribe to the mailing list
kissplice-users@lists.gforge.inria.fr.
To do so, please subscribe at : http://lists.gforge.inria.fr/cgi-bin/mailman/listinfo/
kissplice-users. Do not hesitate to write to the list for any comment or questions on
KisSplice.

2.5 Requirements

KisSplice uses the CMake building tool (at least 2.8.5 CMake version is required). If it
is not directly available on your system, you can download it from http://www.cmake.

2

org/cmake/resources/software.html. KisSplice relies on zlib that is included in most
systems, however it is also available from http://zlib.net.

2.6 Installation

KisSplice is written in C/C++ and is running on Mac OS X and Linux 64 bits platforms..
In order to install KisSplice, you need to:

1. Uncompress the archive file:

tar zxvf kissplice-x.y.z.tar.gz

2. Go into the corresponding directory:

cd kissplice-x.y.z

3. Launch cmake:

cmake .

If zlib library is present in your system in an uncommon path, launch cmake with the
following options:

cmake . -DCMAKE_LIBRARY_PATH=/path/to/zlib -DCMAKE_INCLUDE_PATH=/path/to/zlib

4. Compile the package:

make

5. Run KisSplice:

./bin kissplice

3 Usage

3.1 Testing KisSplice in a couple of minutes

The example presented here only deals with alternative splicing events, but the format is the
same for SNPs and indels.

The sample_example directory contains four files mock1.fq, mock2.fq, virus1.fq, virus2.fq
which correspond to RNAseq reads from the MBTD1 gene in two biological conditions: mock
infection and infection by Influenza A virus. There are two biological replicates for each con-
dition. Running KisSplice on this dataset should output one splicing event.

./bin/kissplice -r sample_example/mock1.fq -r sample_example/mock2.fq
-r sample_example/virus1.fq -r sample_example/virus2.fq

less results/results_mock1_mock2_virus1_virus2_k41_coherents_type_1.fa

3

For our example, the output files can be found in the results directory:
results_mock1_mock2_virus1_virus2_k41_coherents_type_1.fa which contains the al-
ternative splicing event (Fig. 1). The other files are empty.

Figure 1: Content of the file results_mock1_mock2_virus1_virus2_k41_coherents_type_1.fa,
the alternative splicing event found. In red are the flanking k-mers (i.e. extremities of the
flanking exons). In white is the variable part (i.e. the skipped exon).

The output is organised in blocks of four lines, each corresponding to an AS event. Here
there is just one block. Each block is composed of two sequence variants. The upper path
corresponds to the longer variant, and the lower path to the shorter variant. The sequence
of each path starts and ends with the k-mer common to both path (highlighted in red).
The upper path contains an additional sequence (highlighted in white). In this example, the
additional sequence is an alternatively skipped exon. The flanking k-mers are the extremities
of the flanking exons.

The fasta header of each path additionnally contains read counts. When using the –counts
0 option (Figure 2), the counts are easier to understand because there is just one count for
each input file.

Figure 2: Content of the file results_mock1_mock2_virus1_virus2_k41_coherents_type_1.fa,
when using –counts 0 option. In red are the flanking k-mers (i.e. extremities of the flanking
exons). In white is the variable part (i.e. the skipped exon).

In the example, the longer splice variant is supported by 47 reads in mock1, 78 reads in
mock2, 18 reads in virus1, 13 reads in virus 2. The shorter splice variant is supported by 2
reads in mock1, 3 reads in mock 2, 14 reads in virus1 and 15 reads in virus2. Overall, this
exon is more often skipped in samples infected with IAV.

When using the –counts 2 option (default option in Kissplice-2.5.x), (Figure 1), the counts
of the longer variant are split in 4 categories: reads fully contained in the variable part (S
counts), reads spanning the junction with the upstream exon (AS counts), reads spanning
the junction with the downstream exon (SB counts), reads spanning both junctions (ASSB
counts). For this example, out of the 47 reads supporting the longer variant in mock 1: 15
support the first junction, 23 the second junction, 9 are included in the skipped exon and
none support both junctions.

4

3.2 Common TroubleShooting

Before running KisSplice on a large dataset, (10 conditions with 100M reads each), which
takes time and memory, we advise to first run KisSplice on a subset of your dataset (2
conditions with 10M reads each) and get familiar with the output.

If you encounter problems running KisSplice, this is often due to the stack size limit.
Please try increasing your stack size before running KisSplice. The best way to do this
is setting the stack size to unlimited, if your operating system accepts this, executing the
following command:

> ulimit -s unlimited

If your operating system does not accept the previous command, you can increase your
stack size to the highest value possible. To find this value, execute:

> ulimit -H -s

And then, to set the stack size, execute:

> ulimit -s <highest_value>

If the problem persists, please do not hesitate to contact us.

3.3 Options

Type kissplice -h to see the full list of options and parameters

3.4 Counts option

A read is used for quantification if and only if it overlaps (by at least min_overlap nt) the
variable part of the path. We can distinguish various parts in the paths of an event (please
see Fig. 3):

• AS: junction between the left part of the path (A in green) and the variable part of the
longer path (S in red). A read is in AS if it has more than min_overlap nt in S and A

• SB: junction between the right part of the path (B in blue), and the variable part of
the longer path (S in red). A read is in SB if it has more than min_overlap nt in S
and B.

• S: the variable part (in red), the difference between the upper and lower path. A read
is in S if it has less than min_overlap nt in A or B.

• AB: junction between A and B (left, resp. right part of the path) in the shorter path.
A read is in AB if it has more than min_overlap nt in A and B.

• ASSB: the junction AS and SB with S. A read is counted in ASSB if if has more than
min_overlap nt in A and B (and so if fully in S).

5

Figure 3: Example of quantification. In lower case, the context obtained using the
–output-context parameter.

The –counts options can take three values: 0,1,2. If does not affect the quantification
itself, but changes the output.

By default, in kissplice-2.5.x, the counts option is set to 2. This affects only splicing
events.

0. the total count is reported (default behaviour) as CX

1. the counts are written for ASX, SBX, ASSBX, ABX

2. all the counts are reported (ASX, SBX, SX, ASSBX and ABX)

Here X indicates the read file used for the quantification. It is possible to retrieve the
total count C using: C = (AS − ASSB) + (SB − ASSB) + S + ASSB

3.5 Paired-end reads
For now, no particular treatment is given to paired-end reads. We recommend that you use
them as two input files :

kissplice -r condition1/1 -r condition1/2

4 I/O

4.1 Input

KisSplice may be used either directly from one or several sets of reads, or from a bi-directed
de-Bruijn graph.
In the first case, one or several fasta/fastq files containing the reads have to be provided. In
the second case, the de-Bruijn graph alone has to be provided (in dot format). In the input
fasta/q files, each read should be written on exactly two lines for fasta (one for the fasta
identifier and one for the sequence) and four lines for fastq.
The input files should have one of the following extensions: fq, fastq, txt or fasta, fa.
KisSplice also handles compressed reads (.fa.gz)

To have an example of the input files, run KisSplice on the test data (provided in the
directory sample_example), consisting of two read files in fasta format. You will find the
constructed de-Bruijn graph built by KisSplice in the KisSplice directory.

6

4.2 Output

If it was not provided, a de-Bruijn graph is built for the N fasta files (read) given as input;
the following three files are created in the results directory (for k = XX):

• graph_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX.nodes for the nodes
of the de-Bruijn graph

• graph_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX.edges for its edges.

• graph_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX.abundance for the
k −mers count of each node.

In the node file, the 1st column is the node ID, the 2nd its (forward) sequence.
In the file describing the edges, the 1st and 2nd column are the IDs of the nodes that are

connected by an edge, the 3rd column codes for the direction of the edge (FF = from the
forward sequence of a node to the forward sequence of the other node, RR= from reverse to
reverse, FR and RF). Note that if node A is connected with node B by an edge with direction
“FF” (“FR”), node B is connected to node A by an edge directed “RR” (“FR”) and vice versa.

Moreover, six fasta files for the results are created:

1. results_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX_type_0a.fa: Sin-
gle SNPs or sequencing substitution errors

2. results_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX_type_0b.fa: Mul-
tiple SNPs or sequencing substitution errors

3. results_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX_type_1.fa: alter-
native splicing events

4. results_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX_type_2.fa: inex-
act tandem repeats

5. results_NameReadFile1_NameReadFile2_..._NameReadFileN_kXX_type_3.fa: short
indels

6. results_NameReadFile1_..._NameReadFileN_kXX_type_4 .fa: all others, composed
by a shorter path of length > 2k not being a SNP

If the read files (option -r) are provided as input files, the fasta files are checked for read
coherency, which means that each nucleotide of each sequence has to be covered by at least
one read. If KisSplice is used with option -g (only the de-bruijn graph is provided), a check
for read coherency is not possible due to missing information about read coverage.

Since the read coherency step may take a long time, KisSplice preemptively
outputs these six fasta files before checking for read coherency in the directory
results_without_read_coherency inside the results directory. This enables the user to
access the results even before the read coherency module finishes.

KisSplice also creates a summary log file in the results directory named
kissplice_log_summary_(time)_(date)_(random_integer) in case the user wants to view

7

a summary of the execution. This is not meant to be a detailed output. If you need a detailed
output, please run KisSplice in verbose mode (parameter -v) and redirect the output and
error stream to a file.

Fasta files are organized as follows, each 4-lines groups are an event

> identifier_upper_path
sequence upper path
> identifier_lower_path
sequence lower path

The identifier for the upper path is formatted as follows :

>bcc_BB|Cycle_YY|Type_ZZ|upper_path_Length_UU|C1_cov1|C2_cov2[...]|CN_covN|rank_RR

• bcc_BB : Bi-connected component BB the event belongs to

• Cycle_YY : since in each bcc, several cycles may exist, this attribute indicates the ID
of the cycle (here: cycle YY) that generated the bubble

• Type_ZZ: with ZZ={0a, 0b, 1, 2, 3, 4}, the type also corresponds to the type given
by the file name

• upper_path_Length_UU : length (in nucleotides) of the sequence of the upper path of
the bubble

• Cn: with n={1,..., N}: coverage of the path using reads from the read file n; coverage
is the raw count of reads mapping the path with at least k (i.e. the value specified for
the k −mer length) nucleotides.

• rank_RR : This piece of information used to give an indication of if the alleles/the
variants were differentially expressed between two conditions. It was an indication of
the strength of the association between the allele/the variant and a condition but this
was not a statistical test. We now provide a reliable indicator based on statistical
analysis in our package kissDE (see http://kissplice.prabi.fr/tools/kissDE/).

The identifier for the lower path provides virtually the same information, but concerning the
lower (shorter) path of the bubble. In order to facilitate the further post-processing of these
files, the bcc, cycle, type and rank are repeated, although this information is redundant.

If KisSplice is run with option -r (read files), the events in the output files are sorted
with respect to their rank (this is not possible with option -g due to missing information
about read coverage).

4.3 Uncoherent Bubbles

In order for a bubble to be considered as coherent, each nt has to be covered by at least
one read. Uncoherent bubbles are output in a separate file. In principle, uncoherent bubbles
should correspond to artefacts of the DBG (we lose information when we move from reads
to k − mers). In practice, real events which have a low coverage may produce uncoherent
bubbles. Hence, it may be worth to mine this file if you are interested in unfrequent events.

8

5 Performances

5.1 Pre-treatment

KisSplice can be run on raw data. However, as any assembler, it performs better if the data
is pre-treated. Common pre-treatment includes polyA tail removal and quality filter. These
filters are not included in KisSplice distribution but can easily be found. For instance,
FASTX Toolkit can be used to trim the reads, i.e. removing the last bases for which quality
is below a threshold (we commonly use 20). Reads shorter than 20 nt are then removed.

5.2 Job calibration

The first time you run KisSplice , you may be interested in getting quickly initial results.
For moderate size datasets (<500M reads), this can be achieved with default parameters.
For large datasets (>500M reads), this may require to modify some parameters.

By default c is set to 1. This means that only k-mers seen more than once are considered
for the analysis. k-mers seen only once are indeed likely to correspond to sequencing errors.
They can also correspond to rare variants. Increasing c to 5 will correspond to a major
speed-up of KisSplice , at the expense of a loss in sensitivity: variants supported by less
than 5 reads will not be reported anymore.

By default k is set to 41. This means that repeats smaller than 41nt will not cause trouble.
This also means that reads have to overlap by at least 40nt to be assembled. Increasing k
to 51 will enable to solve more complex regions due to repeats, and hence will speed-up
KisSplice , at the expense of a loss in sensitivity: reads will need to overlap by at least 50nt
to be assembled.

You might be wondering about the disk space you need to have available for a job.
KisSplice writes in several files and temporary files, and we currently consider that you
must have two to three times the size of your data in free space to run KisSplice under
proper conditions. To resolve disk space issues, we recommand to use -d option followed by
a directory able to contain between two and three times the size of the input data.

If you want to use parallelisation option in your job, our advice is to put -t at 4 or 6
processors, more is not really efficient.

5.3 Relative coverage

The option -C edits the De-Bruijn graph constructed by removing edges non covered. It
is a local filter. For a specific node, if one of its outgoing edges is covered less than C (in
percentage) it is removed. For a small value of C, this option allows to remove artificial
edges due to overlapping of two k−mers (not supported by the reads) or sequencing errors.
Increasing -C will reduce the run time as there will be less things to enumerate, but the price
is to lose some events with a rare isoform.

9

5.4 Big datasets

For some datasets, enumerating all bubbles is very long. Hence, we set a maximum amount
of time (100000s by default) that the algorithm spends in each BCC (biconnected compo-
nent). If after this time, the BCC is not finished, the algorithm stops and moves to the
next BCC. Running KisSplice with -u option enables to output these unfinished BCCs for
further inspection (for instance using Cytoscape).

If you intend to work on rather big datasets (> 1G reads), have a look at your .e log
file in the end of the run. If you read "Timeout reached", it means the maximum amount
of time has been reached, some bccs may have been lost then. We recommand to run again
KisSplice with a higher -C (-C 0.05 is a good input) to simplify the graph (while not losing
too much information as there are already many reads) and retrieve all events, or to increase
the timeout (option –timeout).

6 Further questions
Please visit our at FAQ http://kissplice.prabi.fr/FAQ/.

10

