TPMath
Math library for Pascal compilers

Jean Debord

December 15, 2007

Contents

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

Installation and compilation

Introduction
Unpacking the archive
Compilation under Windows
Compilation under Linux
Compilation of a program
Compilation with a 16-bit compiler

Numeric precision

Numeric precision
Type Float
Type Complex
Sizeof types
Machine-dependent constants
Demo program

Elementary functions

Constants
Error handlingo oo
Min, max and exchange
Sign ..o
Rounding functions L.
Logarithms and exponentials
Power functions oo
Trigonometric functions
Hyperbolic functions
Demo programso
3.10.1 Function accuracy
3.10.2 Computation speed

10
10
11
11

13
13
14
14
14
14
15

4 Special functions

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Factorial
Gamma function
Polygamma functions
Beta function oL
Error function
Lambert’s function
Demo programso

5 Probability distributions

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
9.9
5.10

Binomial distribution
Poisson distribution
Standard normal distribution
Student’s distribution
Khi-2 distribution oo
Snedecor’s distributiono L.
Exponential distribution 0000
Beta distributiono
Gamma distribution
Demo program

6 Matrices and linear equations

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11

Using vectors and matrices
Maximal array sizes
Array initialization L.
Programming conventions
Error codes
Gauss-Jordan elimination
LU decomposition
QR decomposition
Singular value decomposition
Eigenvalues and eigenvectors
6.10.1 Definitions
6.10.2 Symmetric matrices
6.10.3 General square matrices
Demo programs Lo
6.11.1 Determinant and inverse of a square matrix
6.11.2 Hilbert matrices
6.11.3 Gauss-Jordan method: single constant vector . . .
6.11.4 Gauss-Jordan method: multiple constant vectors
6.11.5 LU, QR and SV decompositions

4

23
23
23
24
25
25
25
26

27
27
28
28
29
30
30
31
31
32
32

33
33
35
35
35
36
36
37
38
39
40
40
40
41
42
42
43
43
44

6.11.6 Cholesky decomposition 44
6.11.7 Eigenvalues of a symmetric matrix 45
6.11.8 Eigenvalues of a general square matrix 45
6.11.9 Eigenvalues and eigenvectors of a general square matrix 45

7 Function minimization 49
7.1 Functions of one variable 49
7.2 Functions of several variables 50

7.2.1 Minimization along aline o1
7.2.2 Newton-Raphson method 51
7.2.3 Marquardt method 53
724 BFGSmethod 54
7.2.5 Simplex method 55
72.6 Logfiles HY)
7.3 Demo programs 55
7.3.1 Function of one variable 55
7.3.2 Minimization along aline 56
7.3.3 Newton-Raphson method 56
7.3.4 Other programs Y

8 Nonlinear equations 59

8.1 Equations in one variable 59
8.1.1 Bisection method 29
8.1.2 Secant method 60
8.1.3 Newton-Raphson method 60

8.2 Equations in several variables 61
8.2.1 Newton-Raphson method 61
8.2.2 Broyden’smethod. 63

8.3 Demo programs Lo 63
8.3.1 Equations in one variable. 63
8.3.2 Equations in several variables 64

9 Polynomials 65
9.1 Polynomials 65
9.2 Rational fractions 65
9.3 Roots of polynomials L. 65

9.3.1 Analytical methods 65
9.3.2 [Iterative method 66

9.4 Ancillary functionso 66

9.5 Demo programs 67
9.5.1 Evaluation of a polynomial 67

5

9.5.2 Evaluation of a rational fraction
9.5.3 Roots of a polynomial

10 Numerical integration and differential equations

10.1 Integration
10.1.1 Trapezoidal rule
10.1.2 Gauss-Legendre integration

10.2 Convolution

10.3 Differential equations

10.4 Demo programs

11 Fast Fourier Transform

11.1 Introduction
11.2 Programming
11.2.1 Array dimensioning
11.2.2 FFT procedures
11.3 Demo programo

12 Random numbers

12.1 Random numbers
12.1.1 Introduction
12.1.2 Generic functions
12.1.3 Specific functionso L
12.1.4 Gaussian random numbers

12.2 Markov Chain Monte Carlo

12.3 Simulated Annealing 0oL

12.4 Genetic Algorithm

12.5 Demo programs
12.5.1 Test of MWC generator
12.5.2 Test of MT generator
12.5.3 Test of UVAG generator
12.5.4 File of random numbers
12.5.5 Gaussian random numbers
12.5.6 Multinormal distribution
12.5.7 Multi-lognormal distribution
12.5.8 Markov Chain Monte-Carlo
12.5.9 Simulated Annealing
12.5.10 Genetic Algorithm

69
69
69
69
70
70
73

77
77
78
78
78
79

13 Statistics 95

13.1 Descriptive statistics 95
13.2 Comparison of means 97
13.2.1 Student’s test for independent samples 97
13.2.2 Student’s test for paired samples 98
13.2.3 One-way analysis of variance (ANOVA) 98
13.2.4 Two-way analysis of variance 100

13.3 Comparison of variances 101
13.3.1 Comparison of two variances 101
13.3.2 Comparison of several variances 102

13.4 Non-parametric testso 103
13.4.1 Mann-Whitney test 103
13.4.2 Wilcoxon test Lo 104
13.4.3 Kruskal-Wallis test 104

13.5 Statistical distribution 105
13.6 Comparison of distributions 106
13.6.1 Observed and theoretical distributions 106
13.6.2 Several observed distributions 107

13.7 Demo programs Lo 107
13.7.1 Descriptive statistics, comparison of means and variances108
13.7.2 Student’s test for paired samples 108
13.7.3 Onme-way analysis of variance 108
13.7.4 Two-way analysis of variance 108
13.7.5 Statistical distribution L. 108
13.7.6 Comparison of distributions 109

14 Linear regression 111
14.1 Straight line ito 111
14.2 Analysis of varianceo 113
14.3 Precision of parameters 114
14.4 Probabilistic interpretation 114
14.5 Weighted regression oL 115
14.6 Programming 116
14.6.1 Regression procedures 116
14.6.2 Qualityof ito 117

14.7 Demo programso 117
14.7.1 Unweighted linear regression 118
14.7.2 Weighted linear regression 118

7

15 Multilinear regression and principal component analysis 119

15.1 Multilinear regression 119
15.1.1 Normal equations 119
15.1.2 Analysis of varianceo L 120
15.1.3 Precision of parameters 121
15.1.4 Probabilistic interpretation 121
15.1.5 Weighted regression 121
15.1.6 Programming 122

15.2 Principal component analysis 123
15.2.1 Theory 123
15.2.2 Programming 123

15.3 Demo programs 124
15.3.1 Multilinear regression 125
15.3.2 Polynomial regression 126
15.3.3 Principal component analysis 126

16 Nonlinear regression 129

16.1 Theory o 129

16.2 Monte-Carlo simulation 131

16.3 Regression procedures 132
16.3.1 Optimization methods 132
16.3.2 Maximal number of parameters 132
16.3.3 Parameter bounds 132
16.3.4 Nonlinear regression 133
16.3.5 Monte-Carlo simulation 134

16.4 Demo programs 134
16.4.1 Nonlinear regression 134
16.4.2 Monte-Carlo simulation 136

17 String functions 137

17.1 Trim functions 137

17.2 Fill functionso 137

17.3 Character replacement 138

174 Parsingo 138

17.5 Formatting functions oo 138

Chapter 1

Installation and compilation

1.1 Introduction

Welcome to TPMath, a mathematical package for Pascal compilers. At this
time, TPMath is comprised of two libraries:

e tpmath for the general math routines

e tpgraph for graphics

This library is primarily intended to be used with Delphi or FreePascal
(FPC), but it may also be used, with some restrictions, with other compilers
such as Turbo Pascal or GNU Pascal (GPC). It is also suitable for multi-
language programming, since most of its routines can be called from another
language.

With a multi-platform compiler such as FPC or GPC the library has
access to a wide range of operating systems. However, the Windows platform
will be considered primarily here.

This chapter explains how to install TPMath and how to compile a pro-
gram which uses it.

1.2 Unpacking the archive

Extract the archive tpmat[...].zip (where [...] stands for version number)
in a given directory.

Be sure to preserve the directory structure. For instance, if you use
pkunzip, add the option -d (i. e. pkunzip -d tpmatl[...].zip).

9

1.3 Compilation under Windows

The most simple way to use TPMath is to compile it as shared libraries
(DLL). This can be done with Delphi or FPC. For this purpose, two compiling
scripts are given in the d11 subdirectory:

e dcompil.bat for Delphi

e fpcompil.bat for FPC

Run the appropriate script from the command line in the d11 subdirec-
tory. The following files will be created:

e the library files (tpmath.d1ll, tpgraph.dll)

e the interface files (tpmath.dcu, tpgraph.dcu with Delphi, tpmath.ppu,
tpgraph.ppu with FPC)

e with FPC, the object files (tpmath.o, tpgraph.o).

Copy the library files to the appropriate directory, e. g. \Windows\System.

Copy the interface files and the object files to the directory where the
compiler stores its units (or to any directory which is in the unit search
path)

1.4 Compilation under Linux

A shell script fpcompil.sh allows to compile the library with FPC un-
der Linux. This script will create the shared library files 1ibtpmath.so,
libtpgraph.so, the interface files tpmath.ppu, tpgraph.ppu and the ob-
ject files tpmath.o, tpgraph.o.

Copy the library files to an appropriate directory, e. g. /usr/lib.

Copy the interface files and the object files to the directory where the
compiler stores its units.

Note : the tpgraph library will work under Linux only if SVGAIlib is
installed and functional.

10

1.5 Compilation of a program
In order to use the library in a program, add the line:
uses tpmath;

at the beginning of the program.
If you wish to use graphics, add:

uses tpmath, tpgraph;

Note: with FPC, the library is compiled in the Delphi mode (option
-Mdelphi) to ensure that the Integer type is 32-bit. The programs should
be compiled with the same option (modify the FPC configuration file if nec-
essary).

1.6 Compilation with a 16-bit compiler

In order to use the library with a 16-bit compiler such as Turbo Pascal or
Delphi 1.0:

1. Make sure that the options ‘Force far calls’ and ‘8087’ (or Emulation)
are activated. On the command line:

-$F+ PN+

2. Define the symbol _16BIT in the ‘Conditional defines’. On the com-
mand line:

-D_16BIT

3. In the demo programs, replace all references to unit tpmath by refer-
ences to the individual units. Unit utypes should always be present,
together with the units containing the routines called by the program
(see file filelist.txt in the units subdirectory for a list of available
units and procedures).

11

12

Chapter 2

Numeric precision

This chapter explains how to set the mathematical precision for the compu-
tations involving real numbers.

2.1 Numeric precision

TPMath allows you to use three floating point types Single (4-byte real,
about 6 significant digits), Double (8-byte real, about 15 significant digits),
or Extended (10-byte real, about 18 significant digits).

The choice of a given type is done by defining a compilation symbol:
SINGLEREAL, DOUBLEREAL or EXTENDEDREAL.

The symbol may be defined on the command line, using the -d option (e.
g. dcc32 prog.pas —dEXTENDEDREAL ...) or in the IDE.

If no symbol is defined, then type Double will be automatically selected.
It is therefore the default type.

If another type is desired, it will be necessary to recompile the library.

Also, if you wish to compare the results given by a TPMath program with
those of a reference program written in another language (e. g. Fortran),
be sure that the two programs have been compiled with the same numeric
precision.

13

2.2 Type Float

TPmath defines a type Float for real numbers. It corresponds to Single,
Double or Extended, according to the compilation options.

So, a program which uses real variables should begin with something like:

uses
tpmath;
var
X : Float;

2.3 Type Complex

For complex numbers, a Complex type is defined as follows:

type Complex = record
X, Y : Float;
end;

2.4 Size of types

The sizes (in bytes) of the different types are given by the following constants:

FltSize for Float
CompSize for Complex
IntSize for Integer
BoolSize for Boolean
StrSize for String
PtrSize for Pointer

2.5 Machine-dependent constants

TPMath defines the following constants:

14

Constant

Meaning

MachEp The smallest real number such that (1.0 + MachEp) has a
different representation (in the computer memory) than 1.0;
it may be viewed as a measure of the numeric precision
which can be reached within the given floating point type.

MaxNum The highest real number which can be represented.

MinNum The lowest positive real number which can be represented.

MaxLog The highest real number X for which Exp (X)
can be computed without overflow.

MinLog The lowest (negative) real number X for which Exp (X)
can be computed without underflow.

MaxFac The highest integer for which the factorial can be computed.

MaxGam The highest real number for which the Gamma function
can be computed.

MaxLgm The highest real number for which the logarithm

of the Gamma function can be computed.

2.6 Demo program

The program testmach.pas located in the demo\fmath subdirectory checks
that the machine-dependent constants are correctly handled by the computer.

This program lists the sizes of the integer and floating point types, to-
gether with the values of the machine-dependent constants, and computes
the following quantities:

Exp(MinLog) Should be approximately equal to MinNum
Ln(MinNum) Should be approximately equal to MinLog
Exp (MaxLog) Should be approximately equal to MaxNum
Ln (MaxNum) Should be approximately equal to MaxLog
Fact (MaxFac)

Gamma (MaxGam) Should be computed without overflow.
LnGamma (MaxLgm)

The following results were obtained with FPC in double precision:

Integer type

Long Integer type
Floating point type
Complex type

Integer (4 bytes)
LongInt (4 bytes)
Double (8 bytes)

Complex (16 bytes)

15

MachEp = 2.2204460492503130E-0016

MinNum = 2.2250738585072020E-0308
Exp(MinLog) = 2.2250738585072152E-0308
MinLog = -7.0839641853226410E+0002
Ln (MinNum) = -7.0839641853226411E+0002
MaxNum = 1.7976931348623150E+0308
Exp (MaxLog) = 1.7976931348623216E+0308
MaxLog = 7.0978271289338400E+0002
Ln (MaxNum) = 7.0978271289338400E+0002
MaxFac = 170

Fact (MaxFac) = 7.257415615307999E+306
MaxGam = 1.7162437695630200E+0002
Gamma (MaxGam) = 1.797693134862315E+308
MaxLgm = 2.5563480000000000E+0305
LnGamma (MaxLgm) = 1.795136671459441E+308

16

Chapter 3

Elementary functions

This chapter describes the mathematical constants and elementary mathe-
matical functions available in TPMath.

3.1 Constants

The following mathematical constants are defined:

Constant Value Meaning
Pi 3.14159... T
Ln2 0.69314... In 2

Ln10 2.30258... In 10
LnPi 1.14472... Inm
InvLn2 | 1.44269... 1/1n2
InvLnl0 | 0.43429... 1/In10
TwoPi 6.28318... 27
PiDiv2 1.57079... /2
SqrtPi 1.77245... NZS
Sqrt2Pi | 2.50662... V21

InvSqrt2Pi | 0.39894... 1/V/27
LnSqrt2Pi | 0.91893... In /27
Ln2PiDiv2 | 0.91893... (In2m)/2
Sqrt2 1.41421... V2
Sqrt2Div2 | 0.70710... V2/2
Gold 1.61803... | Golden Ratio = (1 ++/5)/2
CGold 0.38196... 2 - Gold

Note : The constants are stored with 20 to 21 significant digits. So, they
will match the highest degree of precision available (i.e. type Extended).

17

3.2 Error handling

The function MathErr () returns the error code from the last function eval-
uation. It must be checked immediately after a function call:

Y := £f(X); { f is one of the functions of the library }
if MathErr = FOk then ...

If an error occurs, a default value is attributed to the function. The
possible error codes are the following:

Error code | Value Meaning
FOk 0 No error
FDomain -1 Argument domain error
FSing -2 Function singularity
FOverflow -3 Overflow range error
FUnderflow | -4 Underflow range error
FTLoss -5 Total loss of precision
FPLoss -6 Partial loss of precision

3.3 Min, max and exchange
e Function FMin(X, Y) returns the minimum of two real numbers X, Y.

e Function IMin(X, Y) returns the minimum of two integer numbers
X, Y.

e Function FMax (X, Y) returns the maximum of two real numbers X, Y.

e Function IMax (X, Y) returns the maximum of two integer numbers
X, Y.

e Function FSwap (X, Y) exchanges two real numbers X, Y.

e Function ISwap(X, Y) exchanges two integer numbers X, Y.

18

3.4 Sign

e Function Sgn(X) returns 1if X >0, -1 if X < 0.
e Function Sgn0(X) returns 1if X >0, 0if X =0, -1 if X < 0.

e Function DSgn(A, B) transfers the sign of B to A. It is therefore
equivalent to: Sgn(B) * Abs(A)

3.5 Rounding functions

e Function RoundN(X, N) will round X to N decimal places. N must be
between 0 and 16.

e Function Floor (X) returns the lowest integer > X

e Function Ceil (X) returns the highest integer < X

3.6 Logarithms and exponentials

The functions Expo and Log may be used instead of the standard functions
Exp and Ln, when it is necessary to check the range of the argument. The
new function performs the required tests and calls the standard function if
the argument is within the acceptable limits (for instance, X > 0 for Ln(X));
otherwise, the function returns a default value and MathErr () will return
the appropriate error code.

Calling these functions is more time-consuming than calling the standard
Exp and Ln, because each function involves several tests and two procedure
calls (one to the function itself and another to the standard Exp or Ln).
Hence, if the program must compute lots of logarithms or exponentials, it
may be more efficient to use the standard functions Exp and Ln. In this case,
however, the error handling must be done by the main program.

The same remark applies to the other logarithmic and exponential func-
tions defined in the library:

Function | Definition Pascal code
Exp2(X) 2% Exp(X * Ln2)
Exp10(X) 10% Exp(X * Ln10)
Log2 (X) logy, X Ln(X) * InvLn2
Log10(X) log;p X | Ln(X) * InvLniO
LogA(X, A) log 4 X Ln(X) / Ln(A)

19

Here, too, it may be more efficient to use the Pascal code inline rather
than calling the TPMath function, but the error control will be lost.

3.7 Power functions

e Function Power (X, Y) returns XY. Y may be integer or real, but if Y’
is real then X cannot be negative.

e Function IntPower (X, N) returns X" where N is integer.

Note: To ensure the continuity of the function X* when X — 0, the
value 0° has been set to 1.

3.8 Trigonometric functions

In addition to the standard Pascal functions Sin, Cos and ArcTan, TPMath
provides the following functions:

Function Definition
Tan (X) wmx XA @k+1)3
ArcSin(X) arctanﬁ (—-1<X<1)
ArcCos(X) 5 — arcsin X (-1< X <1)
Pythag(X, Y) VX2 +Y?
ArcTan2(Y, X) arctan %, result in [—, 7]
FixAngle(Theta) | Returns the angle Theta in the range [—m, 7]

Note: If (X,Y) are the cartesian coordinates of a point in the plane, its
polar coordinates are:

R := Pythag(X, Y);
Theta := ArcTan2(Y, X)

20

3.9 Hyperbolic functions

The following functions are available:

Function Definition
Sinh(X) (e —e)
Cosh(X) s +e %)
inh X
Tanh (X) cosh X

ArcSinh(X) | In(X + VX2 +1)
ArcCosh(X) | In(X +vX2%2—1) X>1

ArcTanh (X) %ln% -1<X <1

In addition, the subroutine SinhCosh(X, SinhX, CoshX) computes the
hyperbolic sine and cosine simultaneously, saving the computation of one
exponential.

3.10 Demo programs

These program are located in the demo\fmath subdirectory.

3.10.1 Function accuracy

Program testfunc.pas checks the accuracy of the elementary functions.
For each function, 20 random arguments are picked, then the function is
computed, the reciprocal function is applied to the result, and the relative
error between this last result and the original argument is computed. This
error should be around 107'® in double precision.

3.10.2 Computation speed

Program speed.pas measures the execution time of the built-in mathemat-
ical functions, as well as the additional functions provided in TPMath. The
results are printed on the screen and saved in a text file named speed.out.

21

22

Chapter 4

Special functions

This chapter describes the special functions available in TPMath. Most of
them have been adapted from C codes in the Cephes library by S. Moshier
(http://www.moshier.net).

4.1 Factorial

Function Fact (N) returns the factorial of the non-negative integer NV, also
noted N! :
Nl'=1x2x---xN ol=1

The constant MaxFac defines the highest integer for which the factorial
can be computed (See chapter 2, p. 14).

4.2 Gamma function

e Function Gamma (X) returns the Gamma function, defined by:

T(X) = /OO Xl gy
0

This function is related to the factorial by:
NI'=T(N+1)

The Gamma function is indefinite for X = 0 and for negative integer
values of X. It is positive for X > 0. For X < 0 the Gamma function
changes its sign whenever X crosses an integer value. More precisely, if
X is an even negative integer, I'(X) is positive on the interval | X, X +1],
otherwise it is negative.

23

e Function SgnGamma(X) returns the sign of the Gamma function for a
given value of X.

e Function LnGamma(X) returns the natural logarithm of the Gamma
function.

e Function Stirling(X) approximates Gamma (X) with Stirling’s formula,
for X > 30.

e Function StirLog(X) approximates LnGamma(X) with Stirling’s for-
mula, for X > 13.

The constants MaxGam and MaxLgm define the highest values for which
the Gamma function and its logarithm, respectively, can be computed (See
chapter 2, p. 14).

e Function IGamma(A, X) returns the incomplete Gamma function, de-

fined by:
L /X 4 letdt A>0,X>0
I'(A) Jo

e Function JGamma (A, X) returns the complement of the incomplete Gamma,

function, defined by:
1 A1t
r(A)/X e

Although formally equivalent to 1.0 - IGamma(A, X), this function
uses specific algorithms to minimize roundoff errors.

e Function InvGamma (A, Y) returns X such that IGamma(A, X) =Y

4.3 Polygamma functions

The polygamma function of order n, denoted v, (), is the n-th derivative of
the logarithm of the gamma function:

dal2) = L T ()

dx™

The cases n = 1 and n = 2 are implemented in TPMath as DiGamma (X)
and TriGamma (X)

24

4.4 Beta function

e Function Beta(X, Y) returns the Beta function, defined by:

B(X,Y) = /01 N1 -)Y dt = X 1Y)

(Here B denotes the uppercase greek letter ‘Beta’ !)

Function IBeta(A, B, X) returns the incomplete Beta function, de-
fined by:

1 XAfl B-1
A1 —1)B 1t A>0,B>0,0<X <1
B(A,B)/o (1-1)

Function InvBeta(A, B, Y) returns X such that IBeta(A, B, X) = Y

4.5 Error function

Function Erf (X) returns the error function, defined by:

erf(X) = \/27_r /OX exp(—t2)dt

Function Erfc (X) returns the complement of the error function, defined
by:

erfc(X) = % /XOO exp(—t?)dt

4.6 Lambert’s function

Lambert’s W function is the reciprocal of the function xe*. That is, if y =
W(z), then x = ye¥Y. Lambert’s function is defined for x > —1/e, with
W(—1/e) = —1. When —1/e < x < 0, the function has two values; the value
W (z) > —1 defines the upper branch, the value W (z) < —1 defines the lower
branch.

The function LambertW (X, UBranch, Offset) computes Lambert’s func-
tion.

e X is the argument of the function (must be > —1/e)

25

e UBranch is a boolean parameter which must be set to True for com-
puting the upper branch of the function and to False for computing
the lower branch.

e Offset is a boolean parameter indicating if X is an offset from —1/e.
In this case, W(X —1/e) will be computed (with X > 0). Using offsets
improves the accuracy of the computation if the argument is near —1/e.

The code for Lambert’s function has been translated from a Fortran pro-
gram written by Barry et al (http://www.netlib.org/toms/743).

4.7 Demo programs

e Program specfunc.pas, located in the demo\fmath subdirectory, checks
the accuracy of the functions Fact, Binomial, Gamma, IGamma, Erf,
Erfc, Beta, IBeta, DiGamma and TriGamma

Most of the data come from Numerical Recipes (http://www.nr.com),
but the reference values have been re-computed to 20 significant dig-
its with the Maple software (http://www.maplesoft.com) and the
Gamma values for negative arguments have been corrected.

Each program computes the values of a given function for a set of
predefined arguments and compares the results to the reference values.
Then it displays the number of correct digits found. This number
should be between 14 and 16 in double precision.

e Program testw.pas checks the accuracy of the Lambert function.

The program computes Lambert’s function for a set of pre-defined ar-
guments and compares the results with reference values. It displays
the number of exact digits found. This number should correspond with
the numeric precision used (14-16 digits in double precision).

This program has been translated from a Fortran program written by
Barry et al (http://www.netlib.org/toms/743).

26

Chapter 5

Probability distributions

This chapter describes the functions available in TPMath to compute proba-
bility distributions. Most of them are applications of the special functions
studied in chapter 4.

5.1 Binomial distribution

Binomial distribution arises when a trial has two possible outcomes: ‘failure’
or ‘success’. If the trial is repeated N times, the random variable X is the
number of successes.

e Function Binomial (N,K) returns the binomial coefficient (%), which is

defined by:
|
K K\(N — K)!

e Function PBinom(N, P, K) returns the probability of obtaining K suc-
cesses among N repetitions, if the probability of success is P.

N

Prob(X = K) = (K

)PKQN‘K withQ=1—P

e Function FBinom(N, P, K) returns the probability of obtaining at most
K successes among N repetitions, i. e. Prob(X < K). This is called
the cumulative probability function and is defined by:

K (N
Prob(X < K) =) <k>P’“QN’c =1-Ig(K+1,N - K, P)
k=0

where Iz denotes the incomplete Beta function.

27

The mean of the binomial distribution is © = NP, its variance is 02 =

NP(). The standard deviation is therefore o = /N P(Q).

5.2 Poisson distribution

The Poisson distribution can be considered as the limit of the binomial dis-
tribution when N — oo and P — 0 while the mean ¢ = N P remains small
(say N > 30, P <0.1, NP < 10)

e Function PPoisson(Mu, K) returns the probability of observing the
value K if the mean is p. It is defined by:

K
—u B

Prob(X = K) =e 7

e Function FPoisson(Mu, K) gives the cumulative probability function,
defined by:

K k
M
Prob(X < K) :’?_Oe p = 1 —In(K +1,p)

where It denotes the incomplete Gamma function.

5.3 Standard normal distribution

The normal distribution (a. k. a. Gauss distribution or Laplace-Gauss
distribution) corresponds to the classical bell-shaped curve. It may also be
considered as a limit of the binomial distribution when N is sufficiently ‘large’
while P and @ are sufficiently different from 0 or 1. (say N > 30, NP > 5,
NQ@ >5).

The normal distribution with mean p and standard deviation o is denoted
N(u,0) with p = NP and o = /NPQ. The special case N (0,1) is called
the standard normal distribution.

e Function DNorm(X) returns the probability density of the standard nor-
mal distribution, defined by:

1 X2
X)=—exp|——
100 = e ()
The graph of this function is the bell-shaped curve.

28

e Function FNorm(X) returns the cumulative probability function:

®(X) = Prob(U < X) = /X

—00

Fa)da = % [1 +orf (X?ﬂ

where U denotes the standard normal variable and erf the error func-
tion.

e Function PNorm(X) returns the probability that the standard normal
variable exceeds X in absolute value, i. e. Prob(|U| > X).

e Function InvNorm(P) returns the value X such that ®(X) = P.

5.4 Student’s distribution

Student’s distribution is widely used in Statistics, for instance to estimate
the mean of a population from a sample taken from this population. The
distribution depends on an integer parameter v called the number of degrees
of freedom (in the mean estimation problem, v = n — 1 where n is the
number of individuals in the sample). When v is large (say > 30) the Student
distribution is approximately equal to the standard normal distribution.

e Function DStudent (Nu, X) returns the probability density of the Stu-
dent distribution with Nu degrees of freedom, defined by:

v+1
1 X2\ =
b= (1)
(X) V12 B (4,1) v
where B denotes the Beta function.

e Function FStudent (Nu, X) returns the cumulative probability func-
tion:
X 1/2 ifX <0
— < e — -
,(X) = Prob(t < X) /m £ (x)dz { 1 xS0
where t denotes the Student variable and [= Iy (%, %, #)

e Function PStudent (Nu, X) returns the probability that the Student
variable ¢ exceeds X in absolute value, i. e. Prob(|t| > X).

e Function InvStudent (Nu, P) returns the value X such that ¢,(X) =
P.

29

5.5 Khi-2 distribution

The x? distribution is a special case of the Gamma distribution (see below).
It depends on an integer parameter v which is the number of degrees of
freedom.

e Function DKhi2(Nu, X) returns the probability density of the y? dis-
tribution with Nu degrees of freedom, defined by:

1

B = Sy X e (-3) (X >0)

2

e Function FKhi2(Nu, X) returns the cumulative probability function:

9 X v X
@,(X) = Prob(x* < X) = [fu(a)dz = 1Ir (5, 5)
0
where It denotes the incomplete Gamma function.

e Function PKhi2(Nu, X) returns the probability that the y? variable
exceeds X, i. e. Prob(x? > X).

e Function InvKhi2(Nu, P) returns the value X such that ®,(X) = P.

5.6 Snedecor’s distribution

The Snedecor (or Fisher-Snedecor) distribution is used mainly to compare
two variances. It depends on two integer parameters v; and v, which are the
degrees of freedom associated with the variances.

e Function DSnedecor (Nul, Nu2, X) returns the probability density of
the Snedecor distribution with Nul and Nu2 degrees of freedom, defined

by:
1 141 % v 141 _¥
ful,w(X):i-(—) - X7 ~(1+—X) (X >0)
B(4,2) \» vy
e Function FSnedecor (Nul, Nu2, X) returns the cumulative probability
function:
X ey 1 Vg
®, ,(X)=P bF<X:/ i ()dr = 1—1 (_7_,_ >
1,2<) o (o) 0 f ’2<x> o o 272 1/2+V1X

where F' denotes the Snedecor variable.

30

e Function PSnedecor (Nul, Nu2, X) returns the probability that the
Snedecor variable F' exceeds X, i. e. Prob(F > X).

e Function InvSnedecor (Nul, Nu2, P) returns the value X such that

D, ., (X)=P.

5.7 Exponential distribution

The exponential distribution is used in many applications (radioactivity,
chemical kinetics...). It depends on a positive real parameter A.

e Function DExpo (A, X) returns the probability density of the exponen-
tial distribution with parameter A, defined by:

fa(X) = Aexp(—AX) (X >0)
e Function FExpo(A, X) returns the cumulative probability function:

2A(X) = [fale)dr =1 - exp(~AX)

5.8 Beta distribution

The Beta distribution is often used to describe the distribution of a random
variable defined on the unit interval [0, 1]. It depends on two positive real
parameters A and B.

e Function DBeta(A, B, X) returns the probability density of the Beta
distribution with parameters A and B, defined by:

fA,B(X):m.XA1.<1_X>Bl (OSXSU

e Function FBeta(A, B, X) returns the cumulative probability function:
X
B4 p(X) = /0 Fan(@)dr = I5(A, B, X)

31

5.9 Gamma distribution

The Gamma distribution is often used to describe the distribution of a ran-
dom variable defined on the positive real axis. It depends on two positive
real parameters A and B.

e Function DGamma (A, B, X) returns the probability density of the Gamma
distribution with parameters A and B, defined by:

BA

F(4) - XA exp(—BX) (X >0)

fap(X) =

e Function FGamma(A, B, X) returns the cumulative probability func-
tion:

X
O p(X) = /0 Fap(x)de = In(A, BX)
The y? distribution is a special case of the Gamma distribution, with
A=v/2and B =1/2.
5.10 Demo program

Program binom.pas, located in the demo\proba subdirectory, compares the
cumulative probabilities of the binomial distribution, estimated by function
FBinom, with the values obtained by summing up the individual probabilities.

32

Chapter 6

Matrices and linear equations

This chapter describes the procedures and functions available in TPMath to
perform vector and matrix operations, and to solve systems of linear equa-
tions.

6.1 Using vectors and matrices

TPMath defines the following dynamic array types:

Vector type | Matrix type Base variable

PVector PMatrix Floating point number (type Float)
PIntVector | PIntMatrix Integer
PCompVector | PCompMatrix | Complex number (type Complex)
PBoolVector | PBoolMatrix Boolean
PStrVector | PStrMatrix String

To use these arrays in your programs, you must:

1. Declare variables of the appropriate type, then allocate each array be-
fore using it:

var
V : PVector;
A : PMatrix;
begin
DimVector (V, N); { creates vector V[0..N] }
DimMatrix(A, N, M); { creates matrix A[O..N, 0..M] }
{ N, M are integer variables }

end.

33

If the allocation does not succeed, the array is given the value nil. So,
it is possible to test the result:

DimVector (V, 10000);
if V = nil then
Write(’Not enough memory!’);

Note that this allocation step is mandatory, because these dynamic
arrays are, in fact, pointers. Unlike standard Pascal arrays, it is not
sufficient to declare the variables!

2. Use arrays as in standard Pascal, noting that:

(a)

You must use the indirection operator () to reference any array
element, i.e. write V" [I] and A" [I]~[J] instead of V[I] and
Al1,7]].

You cannot use the assignment operator (:=) to copy the contents
of an array into another array. Writing B := A simply makes B
point to the same memory block than A.

All arrays begin at index 0, so that the 0-indexed element is always
present, even if you don’t use it.

A matrix is declared as an array of vectors, so that A~ [I] denotes
the I-th vector of matrix A and may be used as any vector.

Vector and matrix parameters must be passed to functions or pro-
cedures with the var attribute when these parameters are dimen-
sioned inside the procedure. Otherwise, this attribute is not nec-
essary.

3. To deallocate an array, use the Del... procedures:

DelVector(V, N);
DelMatrix(A, N, M);

See file tpmath.pas in the d11 subdirectory for a list of available Dim. . .
and Del... procedures.

34

6.2 Maximal array sizes

The maximal array size depends on the maximal size of a variable (216 =
65536 (64 kilo) bytes for a 16-bit compiler, 23! = 2147483648 (2 giga) bytes
for a 32-bit compiler), and on the size of the base type. For an array[0. .N]
of type T, the maximal value of N is given by the formula:

N := Trunc(MaxSize / SizeO0f(T)) - 2;

The sizes for the different base types are given by the following constants:

MAX FLT for Float
MAX_COMP for Complex
MAX_INT for Integer
MAX BOOL for Boolean
MAX_STR for String

For a matrix, the maximal size in the second dimension, i. e. the number
of vectors in the matrix, is given by the constant MAX_VEC. This value can
also be computed from the previous formula, by defining T as Pointer, since
a matrix is in fact an array of pointers.

6.3 Array initialization

If the allocation succeeds, all array elements are initialized to zero (for nu-
meric arrays), False (for boolean arrays), or the null string (for string ar-

rays).
This initialization step may be too slow for large arrays. It can be skipped
with the statement SetAutoInit (False) and reactivated with SetAutoInit (True).

6.4 Programming conventions

The following conventions have been adopted:

e Parameters Lb and Ub denote the lower and upper bounds of the indices,
for a vector V[Lb..Ub] or a square matrix A[Lb..Ub, Lb..Ub].

e ParametersLbl, Ubland Lb2, Ub2 denote the lower and upper bounds
of the indices, for a rectangular matrix A[Lbl..Ubl, Lb2..Ub2].

e With the exception of the memory allocation routines (DimVector,
DimMatrix ...), the procedures do not allocate the vectors or matrices
present in their parameter lists. These allocations must therefore be
performed by the main program, before calling the procedures.

35

6.5 Error codes

The following error codes are defined:

Error code | Value Meaning
MatQOk 0 No error
MatNonConv -1 Non-convergence of an iterative procedure
MatSing -2 Quasi-singular matrix
MatErrDim -3 Non-compatible dimensions
MatNotPD -4 Matrix not positive definite

6.6 Gauss-Jordan elimination

If B(nxn) and C(nxm) are two real matrices, the Gauss-Jordan elimination
can compute the inverse matrix B=!, the solution X to the system of linear
equations BX = C, and the determinant of B.

This procedure is implemented in TPMath as the following procedure:
GaussJordan(A, Lb, Ubl, Ub2, Det)

where:

e On input, A[Lb..Ubl, Lb..Ub2] is the global matrix [B|C|, which
means that:

— the first n columns of A contain the matrix B

— the other columns of A contain the matrix C

e On output, A is transformed into the global matrix [B~!|X], which
means that:

— the first n columns of A contain the inverse matrix B~

— the other columns of A contain the solution matrix X
e Det is the determinant of B
Notes:

e C may be a vector, in this case m = 1 and X is also a vector.

36

e The original matrix A is overwritten by the procedure. If necessary,
the calling program must save a copy of it.

After a call to GaussJordan, the function MathErr will return the error
code:

e MatOk if no error
e MatErrDim if Ubl > Ub2

e MatSing if B is quasi-singular

6.7 LU decomposition

The LU decomposition algorithm factors the square matrix A as a product
LU, where L is a lower triangular matrix (with unit diagonal terms) and U
is an upper triangular matrix.

The linear system AX = B is then solved by:
LY =B (6.1)

UX =Y (6.2)

System 6.1 is solved for vector Y, then system 6.2 is solved for vector X.
The solutions are simplified by the triangular nature of the matrices.

TPMath provides the following procedures:

e procedure LU Decomp(A, Lb, Ub) performs the LU decomposition of
matrix A[Lb..Ub, Lb..Ub].

The matrices L and U are stored in A, which is therefore destroyed.

After a call to LU Decomp, the function MathErr will return one of the
following error codes:

— MatO0Ok if no error

— MatSing if A is quasi-singular

e procedure LU Solve(A, B, Lb, Ub, X) solves the system AX = B,
where X and B are real vectors, once the matrix A has been trans-
formed by LU_Decomp.

37

6.8 QR decomposition

This method factors a matrix A as a product of an orthogonal matrix Q by
an upper triangular matrix R:

A =QR
The linear system AX = B then becomes:
QRX =B

Denoting the transpose of Q by Q" and left-multiplying by this transpose,
one obtains:
Q'QRX=Q'B
or:
RX=Q'B
since the transpose of an orthogonal matrix is equal to its inverse.

The last system is solved by making advantage of the triangular nature
of matrix R.

Note : The QR decomposition may be applied to a rectangular matrix
n x m (with n > m). In this case, Q has dimensions n x m and R has
dimensions m x m. For a linear system AX = B, the solution minimizes the
norm of the vector AX - B. It is called the least squares solution.

TPMath provides the following procedures:

e procedure QR Decomp(A, Lb, Ubl, Ub2, R) performs the QR decom-
position on the input matrix A[Lb..Ubl, Lb..Ub2].

The matrix @Q is stored in A, which is therefore destroyed.

After a call to QR_Decomp, the function MathErr will return one of the
following error codes:

— MatOQk if no error
— MatErrDim if Ub2 > Ubl

— MatSing if A is quasi-singular

e procedure QR_Solve(Q, R, B, Lb, Ubl, Ub2, X) solves the system
QRX = B.

38

6.9 Singular value decomposition

Singular value decomposition (SVD) factors a matrix A as a product:
A=USV'

where U et V are orthogonal matrices. S is a diagonal matrix. Its diagonal
terms 9;; are all > 0 and are called the singular values of A. The rank of A
is equal to the number of non-null singular values.

o If A is a regular matrix, all S;; are > 0. The inverse matrix is given
by:

A7l =(USVH = (VHTISTIU = V x diag(1/S;) x U'T
since the inverse of an orthogonal matrix is equal to its transpose.

So the solution of the system AX = B is given by X = A™'B

e If A is a singular matrix, some S;; are null. However, the previous
expressions remain valid provided that, for each null singular value,
the term 1/S;; is replaced by zero.

It may be shown that the solution so calculated corresponds:

— in the case of an under-determined system, to the vector X having
the least norm.

— in the case of an impossible system, to the least-squares solution.
Note : Just like the QR decomposition, the SVD may be applied to a
rectangular matrix n x m (with n > m). In this case, U has dimensions

n X m, S and V have dimensions m x m. For a linear system AX = B, the
SVD method gives the least squares solution.

TPMath provides the following procedures:

e procedure SV Decomp(A, Lb, Ubl, Ub2, S, V) performs the singular
value decomposition on the input matrix A[Lb..Ubl, Lb..Ub2].

The matrix U (such that A = USV ") is stored in A, which is therefore
destroyed.

After a call to SV_Decomp, the function MathErr will return one of the
following error codes:

39

— MatOk if no error
— MatErrDim if Ub2 > Ubl
— MatNonConv if the iterative process does not converge
e procedure SV_SetZero(S, Lb, Ub, Tol) sets to zero the singular val-
ues S; which are lower than a fraction Tol of the highest singular value.

This procedure may be used when solving a system with a near-singular
matrix.

e procedure SV_Solve(U, S, V, B, Lb, Ubl, Ub2, X) solves the sys-
tem USV'X = B.

e procedure SV_Approx(U, S, V, Lb, Ubl, Ub2, A) approximatesa ma-
trix A by the product USV T, after the lowest singular values have been
set to zero by SV_SetZero.

6.10 Eigenvalues and eigenvectors

6.10.1 Definitions

A square matrix A is said to have an eigenvalue A, associated to an eigen-
vector V, if and only if:
A- V=)V

A symmetric matrix of size n has n distinct real eigenvalues and n or-
thogonal eigenvectors.

A non-symmetric matrix of size n has also n eigenvalues but some of them
may be complex, and some may be equal (they are said to be degenerate).

6.10.2 Symmetric matrices

Procedure Jacobi(A, Lb, Ub, MaxIter, Tol, V, Lambda) computes the
eigenvalues and eigenvectors of the real symmetric matrix A[Lb. .Ub, Lb..Ub],
using the iterative method of Jacobi.

MaxIter is the maximum number of iterations, Tol is the required preci-
sion on the eigenvalues.

The eigenvectors are returned in matrix V; the eigenvalues are returned
in vector Lambda.

The eigenvectors are stored along the columns of V. They are normalized,
with their first component always positive.

40

After a call to Jacobi, function MathErr returns one of two error codes:
e MatOk if all goes well.
e MatNonConv if the iterative process does not converge.

This procedure destroys the original matrix A.

6.10.3 General square matrices

e procedure EigenVals(A, Lb, Ub, Lambda) computes the eigenvalues
of the real square matrix A[Lb..Ub, Lb..Ub].

Eigenvalues are stored in the complex vector Lambda. The real and
imaginary parts of the i’® eigenvalue are stored in Lambda(i).X and
Lambda (i) .Y, respectively. The eigenvalues are unordered, except that
complex conjugate pairs appear consecutively with the value having
the positive imaginary part first.

Function MathErr returns the following error codes:

e (if no error

e (-i) if an error occurred during the determination of the i eigen-
value. The eigenvalues should be correct for the indices > i.

This procedure destroys the original matrix A.

e procedure EigenVect(A, Lb, Ub, Lambda, V) computes the eigen-
values and eigenvectors of the real square matrix A[Lb..Ub, Lb..Ub].

Eigenvalues are stored in the complexr vector Lambda, just like with
EigenVals.

Eigenvectors are stored along the columns of the real matrix V.

If the it" eigenvalue is real, the i column of V contains its eigenvector.
If the i'" eigenvalue is complex with positive imaginary part, the i‘®
and (i+1)" columns of V contain the real and imaginary parts of its
eigenvector. The eigenvectors are unnormalized.

Function MathErr returns the same error codes than EigenVals. If the
error code is not null, none of the eigenvectors has been found.

This procedure destroys the original matrix A.

41

6.11 Demo programs

These programs are located in the demo\matrices subdirectory.

6.11.1 Determinant and inverse of a square matrix

Program detinv.pas computes the determinant and inverse of a square ma-
trix. The inverse matrix is re-inverted and the result (which should be equal
to the original matrix) is printed. The determinant of the inverse matrix is
also evaluated and the product of the two determinants (which should be -1)
is displayed.

The example matrix is:

1 20 -1
-1 4 3 =05
A= 2 2 1 -3
00 3 —4
The inverse is:
_41 4 11 _ 517
21 21 7 7
16 1 _ 5 1
21 21 4 14
Al =
_40 8 8 _3
21 21 7 7
_ 10 2 6 _4
I 7 7

or, in approximate form:

—1.9523 0.1905 1.5714 —0.7143

0.7619 0.0476 —-0.3571 0.0714
—1.9048 0.3810 1.1429 —0.4286
—1.4286 0.2857 0.8571 —0.5714

Alx

The determinant is -21.

42

6.11.2 Hilbert matrices

Program hilbert.pas tests the Gauss-Jordan method by solving a series of
Hilbert systems of increasing order. Such systems have matrices of the form:

r 1 1 1 1 T
L s 5 1 N
1 1 1 1 _1
2 3 4 5 N+1
1 1 1 1 1
A=|3 1 5 6 N+2
1 1 1 1 _1
4 5 6 7 N+3
IS S G U |
L N N+1 N+2 N+3 2N—-1 |

Each element of the constant vector (stored in the (N + 1) column of
matrix A) is equal to the sum of the terms in the corresponding line of the
matrix :

N
Ainy1 = Z Ay
Jj=1

The solution of such a system is [1,1,1,---1]

The determinant of the Hilbert matrix tends towards zero when the order
increases. The program stops when the determinant becomes too low with
respect to the numerical precision of the floating point numbers. This occurs
at order 13 in double precision.

6.11.3 (Gauss-Jordan method: single constant vector

Program lineql.pas solves the linear system AX = B. After a call to
LinEq, A contains the inverse matrix and B contains the solution vector.

The example system matrix is:

2 1 5 —8

7 6 2 2
A=1_1 3 _10 4
2 2 2 1
The constant vector is:
0
17
B = —10
7

43

The solution vector is:

—_ = = =

The determinant is -135

6.11.4 Gauss-Jordan method: multiple constant vec-
tors

Program lineqm.pas solves a series of linear systems with the same system
matrix and several constant vectors. The system matrix is stored in the
first n columns of matrix A; the constant vectors are stored in the following
columns. After a call to GaussJordan, the first n columns of A contain the
inverse matrix and the following columns contain the solution vectors.

The example system matrix from the previous program is used. The
matrix of constant vectors is:

0 —-15 14 -—-13)
17 50 1 8 30
-10 -5 —-12 —-51 -—15
717 1 37 10

The solution matrix is:

12 140
15 -1 5 5
10 160
13 -1 70

6.11.5 LU, QR and SV decompositions

The demo programs test_lu.pas, test_qr.pas and test_svd.pas solve the
linear system used by lineql.pas (paragraph 6.11.3) with the LU, QR, and
singular value decompositions, respectively.

6.11.6 Cholesky decomposition

Program cholesk.pas performs the Cholesky decomposition of a positive
definite symmetric matrix. The matrix is decomposed then the program
computes the product LL" which must give the original matrix.

44

The example matrix is:

60 30 20
30 20 15
20 15 12

>
|

Its Cholesky factor is:

215
L=| V15

Se
Seo

or, in approximate form:

7.745967 0 0
L~ | 3.872983 2.236068 0
2.581989 2.236068 0.577350

6.11.7 Eigenvalues of a symmetric matrix

Program eigensym.pas computes the eigenvalues and eigenvectors of Hilbert
matrices (see program hilbert.pas) by the method of Jacobi. Such matrices
are very ill-conditioned, which can be seen from the high ratio between the
highest and lowest eigenvalues (the condition number).

6.11.8 Eigenvalues of a general square matrix

Program eigenval . pas computes the eigenvalues of a general square matrix.

The example matrix from the detinv.pas program is used. It has two
real and two complex (conjugate) eigenvalues:

-1.075319 + 1.709050 * 1
-1.075319 - 1.709050 * i
-1.000000
5.150639

6.11.9 Eigenvalues and eigenvectors of a general square
matrix

Program eigenvec.pas computes both the eigenvalues and eigenvectors of

a general square matrix. The same example matrix is used.

The eigenvectors are stored columnwise in a matrix V. In order to retrieve
the eigenvectors associated with complex eigenvalues, the program takes into
account the following properties:

45

e Complex conjugate pairs of eigenvalues are stored consecutively in vec-
tor Lambda, with the value having the positive imaginary part first.

o If the i"* eigenvalue is complex with positive imaginary part, the it"
and (i+1)™ columns of matrix V contain the real and imaginary parts
of its eigenvector.

e Eigenvectors associated with complex conjugate eigenvalues are them-
selves complex conjugate.

Hence the algorithm:

if Lambda”[I].Y = 0.0 then
{ Eigenvector is in column I of V }
else if Lambda”[I].Y > 0.0 then
{ Real and imag. parts of eigenvector are in columns I and (I+1)
For component K: real part = V~[K]"[I],
imag. part = V°[K]~[I+1] }
else
{ Real and imag. parts of eigenvector are in columns (I-1) and I
For component K: real part = V~[K]~ [I-1],
imag. part = - V" [K]"[I] }

The results obtained with the example matrix are the following:

Eigenvalue:
-1.075319 + 1.709050 * i
Eigenvector:

-0.220224 + 0.394848 * i
0.078289 - 0.303345 * i
0.029348 + 0.787594 * i
0.374358 + 0.589119 * i

Eigenvalue:
-1.075319 - 1.709050 * i
Eigenvector:

46

-0.220224
0.078289
0.029348
0.374358

Eigenvalue:
-1.000000
Eigenvector:

2.605054
-1.042021
3.126065
3.126065

Eigenvalue:
5.150638

Eigenvector:
0.345194
0.788801

0.441744
0.144823

+

0.394848
0.303345
0.787594
0.589119

% ¥ Xx *
He e e .

47

48

Chapter 7

Function minimization

This chapter describes the procedures and functions available in TPMath to
minimize functions of one or several variables. Only deterministic optimiz-
ers are considered here. Stochastic optimization will be studied in another
chapter.

7.1 Functions of one variable

Let Func be a function of a real variable X. In TPMath such a function is
declared as:

function Func(X : Float) : Float;

There is a special type TFunc for this kind of functions.
The problem is to find the real Xmin for which Func(X) is minimal.

Procedure GoldSearch(Func, A, B, MaxIter, Tol, Xmin, Ymin) per-
forms the minimization by the ‘golden search’ method. This means that, at
each iteration, the number Xmin is ‘bracketed’ by a triplet (A, B, C) such
that:

A< B<(C

A, B, C are within the golden mean ¢, i.e.

B-A C-A 1+56

Func(B) < Func(A) and Func(B) < Func(C).

49

The user must provide two numbers A and B which define the ‘unit vector’
on the X axis. The number C is found by the program itself. It is not
necessary that the interval [A, B] contains the minimum.

The user must also provide:

e the maximum number of iterations MaxIter

e the tolerance Tol with which the minimum must be located. This value
should not be higher than the square root of the machine precision
(MachEp'/?2 =~ 1.5 x 10~® in double precision)

The procedure returns the coordinates (Xmin, Ymin) of the minimum.

After a call to GoldSearch, function MathErr() will return one of two
error codes:

e OptOk if no error occurred

e OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

The determination of the bracketing triplet A, B, C is performed within
GoldSearch by a call to a procedure MinBrack. This procedure may be called
independently. Its syntax is:

MinBrack(Func, A, B, C, Fa, Fb, Fc)
The user must provide the first two numbers A and B. The number C

is found by the procedure. The corresponding values of the function are
returned in Fa, Fb, Fc.

7.2 Functions of several variables

Let Func be a function of a real vector x such that x = [z, 25, - - -]. In TPMath
such a function is declared as:

function Func(X : PVector) : Float;

There is a special type TFuncNVar for this kind of functions.

The problem is to find the vector X for which Func (X) is minimal.

20

7.2.1 Minimization along a line

If x° is a starting point and dx is a constant vector, minimizing f from x°

along the direction specified by dx is equivalent to finding the number r such
that g(r) = f(x°+ - 6x) is minimal.

The following procedure:
LinMin(Func, X, DeltaX, Lb, Ub, R, MaxIter, Tol, F_min)

will minimize function Func from point X[Lb. .Ub] in the direction spec-
ified by vector DeltaX[Lb..Ub]. R is the initial step in that direction, ex-
pressed as a fraction of the norm of DeltaX. If R is set to 0 or a negative
value, the procedure will use the default value R = 1. The user must also
provide the maximum number of iterations MaxIter and the tolerance Tol,
as for procedure GoldSearch.

On output, LinMin returns:

e the coordinates of the minimum in X()
e the step corresponding to the minimum in R

e the function value at the minimum in F_min

After a call to LinMin, function MathErr () will return one of the error
codes OptOk or OptNonConv, as with GoldSearch.

7.2.2 Newton-Raphson method

The Newton-Raphson method starts with an approximation x" for the coor-
dinates of the minimum and generates a new approximation x by using the
second-order Taylor series expansion of function f around x°:

Fx) = fx) + (x=x") " g(x") + S(x—x")" - H(x) - (x —x°) (7.1)

g denotes the gradient vector (vector of first partial derivatives) and H de-
notes the hessian matrix (matrix of second partial derivatives). For instance,
for a fonction of two variables f(z1,) :

of

g(x") = ,
L (a9, 29)

ol

9?2 52
(et ad) g (el ad)
0
H(X) - 82 82
(9:1628];:1 <x(1)’ .238) T;é(x(l]ﬂ .Tg)

By differentiating eq. (1) we obtain the gradient of f at point x:
g(x) = g(x") + H(x’) - (x — x’) (7.2)
If x is sufficiently close to the minimum, g(x) ~ 0 so:
x=x"-H 1'% gx"

In practice, it is better to determine the step k which minimizes the

function in the direction specified by —H™*(x") - g(x°):
x=x"—k -H ' gx°

The determination of k is performed by line minimization.

The following procedure:
Newton(Func, HessGrad, X, Lb, Ub, MaxIter, Tol, F_min, G, H_inv, Det)

minimizes function Func by the Newton-Raphson method.

The user must provide a procedure HessGrad to compute the gradient G
and the hessian H of the function at point X. This procedure is declared as:

procedure HessGrad(X, G : PVector; H : PMatrix);
which corresponds to type THessGrad.
MaxIter and Tol have their usual meaning.

On output, Newton returns:

e the coordinates of the minimum in X

the function value at the minimum in F_min

the gradient at the minimum in G (should be near 0)
e the inverse hessian matrix at the minimum in H_inv

e the determinant of the hessian matrix at the minimum in Det

After a call to Newton, function MathErr () will return one of three error
codes:

e OptOk if no error occurred

e OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

e OptSing if the hessian matrix is quasi-singular

52

Approximate gradient and hessian

Although it is recommended to compute the gradient and hessian from an-
alytical derivatives, approximate values may be found using finite difference
approximations:

82_f(x) St ha) + (@i — hi) = 2f (2:)
0w 2

82f (X) ~ f(ﬂ?z + hiy«rj + h]) - f(l'z + hi; I'j) — f(l‘l, Tj+ h]) + f(xi’xj)
a$i8$j hzh]
The increment h; is such that h; = 1 | z; | where 7 is a constant which

should not be less than the cube root of the machine epsilon (MachEp'/? a
6.06 x 107% in double precision).

This method is illustrated in the demo programs testnewt.pas and
testmarq.pas (see paragraph 7.3).

7.2.3 Marquardt method

This method is a variant of the Newton-Raphson method, in which each
diagonal term of the hessian matrix is multiplied by a scalar equal to (14 \),
where A is the Marquardt parameter. This parameter is initialized at some
small value (e.g. 1072) at the beginning of the iterations, then it is decreased
by a factor 10 if the iteration leads to a decrease of the function, otherwise it
is increased by a factor 10. This procedure usually improves the convergence
of the Newton-Raphson method.

If the method converges, A should reach a very small value, so that the
Marquardt and Newton-Raphson algorithms should produce identical results
for the inverse hessian matrix. However, this is not guaranteed, so that, if
a precise inverse hessian is required, it may be useful to perform a single
iteration of the Newton-Raphson method once Marquardt’s algorithm has
successfully terminated (see demo program testmarq.pas).

This procedure is implemented as:

Marquardt (Func, HessGrad, X, Lb, Ub, MaxIter, Tol, F_min, G, H_inv, Det)

It is used like Newton, except that an additional error code, OptBigLambda,
may be returned by MathErr if the Marquard parameter increases beyond a
predefined value (10% in this implementation).

93

7.2.4 BFGS method

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is another variant
of the Newton method in which the hessian matrix does not need to be
computed explicitly. It is said a quasi-Newton method.

The BFGS algorithm uses the following formula to construct the inverse
hessian matrix iteratively:

ox-ox' (H7'-dg)- (H7'-dg)’

_ T . H1. u-ul
x| - g b H 1o 08 Hit-og)-uu

H =H

with:

o x H ' og
~0x'-6g ogl -H ' og

0X = Xiy1 — X; 0g = g(xiy1) — 8(xi) u

The algorithm is usually started with the identity matrix (Hy' = I).

This procedure is implemented as:

BFGS(Func, Gradient, X, Lb, Ub, MaxIter, Tol, F_min, G, H_inv)

The user must provide a procedure Gradient to compute the gradient G
of the function at point X. This procedure is declared as:

procedure Gradient(X, G : PVector);

which corresponds to type TGradient.

The other parameters have the same meaning than in Newton.

Approximate gradient

It is possible to estimate the gradient of function Func by finite difference
approximations, as described for the Newton method. Here the relative in-
crement 7 should not be less than the square root of the machine epsilon
(about 1.5 x 107® in double precision).

See demo program testbfgs.pas for an example.
As usual, it is recommended to use analytical derivatives whenever pos-

sible.

o4

7.2.5 Simplex method

Unlike previous methods, the simplex method of Nelder and Mead does not
use derivatives to locate the minimum. Instead it constructs a geometrical
figure (the ‘simplex’) having (n + 1) vertices, if n is the number of variables.
For instance, in the two-dimensional space (n = 2), the simplex would be
a triangle. Depending on the function values at the vertices, the simplex is
reduced or expanded until it comes close to the minimum.

This method is implemented as:
Simplex(Func, X, Lb, Ub, MaxIter, Tol, F_min)

where the parameters have their usual meaning.

7.2.6 Log files

It is possible to create ‘log files’ which save the progress of the iterations. If
the algorithm terminates abnormally, checking these files may help finding
the error. For each method (Newton, Marquard, BFGS, Simplex) there is a
Save... procedure which creates the log file. Each procedure accepts the
name of the file as its parameter (e.g. SaveBFGS(’bfgs.txt’)). The file is
automatically closed when the optimization procedure ends.

See the demo programs for examples using such files.

7.3 Demo programs

These programs are located in the demo\optim subdirectory.

7.3.1 Function of one variable

Program minfunc.pas performs the golden search minimization on the func-
tion:

fla) = e o
The minimum is at (In2, —1/4).

The minimum found by GoldSearch is compared with the true minimum.

25

7.3.2 Minimization along a line

Program minline.pas applies line minimization to the function of 3 variables
(taken from the Numerical Recipes example book) :

f(z1,m9,23) = (11 — 1) + (29 — 1)? + (23 — 1)?

The minimum is f(1,1,1) =0, i. e. for a step r = 1 from x = [0,0, 0] in
the direction 6x = [1,1,1].

The program tries a series of directions:
0x = {\/5(:03 (2;—0> . V/2sin (z;—(]) ,1} i=1..10

For each pass, the location of the minimum, and the value of the function
at the minimum, are printed. The true minimum is found at ¢ = 5.

7.3.3 Newton-Raphson method

Program testnewt . pas uses the Newton-Raphson method to minimize Rosen-
brock’s function (H. Rosenbrock, Comput. J., 1960, 3, 175):

fla,y) =100(y — 2*)* + (1 — 2)”
for which the gradient and hessian are:

| —400(y — 2*)x — 2 + 22
g(r,y) = [200y — 200z

120022 — 400y + 2 —400x
H(z,y) = [—400z 200]

and the determinant of the hessian is:
det H(z,y) = 80000(z* — y) + 400

The minimum is f(1,1) = 0, where:

g(1,1)=[8]

1 5 1
D=3 o]
200
det H(1,1) = 400

In the demo program, the gradient and hessian are computed analyti-
cally. You can compare with the numerical computations by including file
numhess. inc in the program.

o6

7.3.4 Other programs

Programs testmarq.pas, testbfgs.pas and testsimp.pas minimize Rosen-
brock’s function with the Marquardt, BFGS and Simplex methods, respec-
tively.

57

o8

Chapter 8

Nonlinear equations

This chapter describes the procedures available in TPMath to solve nonlinear
equations in one or several variables. Only general methods are considered
here. Polynomial equations will be studied in the next chapter.

8.1 Equations in one variable

The goal is to solve the nonlinear equation f(z) = 0, or, in other terms, find
a root of function f.

8.1.1 Bisection method

Procedure Bisect (Func, X, Y, MaxIter, Tol, F) finds a root of function
Func by the bisection method. At each iteration, the root is bounded by two
numbers (X, Y) such that the function has opposite signs. Then, a new
approximation to the root is generated by taking the mean of these numbers.

The function Func must be declared as:
function Func(X : Float) : Float;

The user must provide initial values for X and Y. It is not necessary that
the interval [X, Y] contains the root.

The user must also provide:

e the maximum number of iterations MaxIter

e the tolerance Tol with which the root must be located.

29

The procedure returns the refined values of X and Y and the function
value Func(X) in F.

After a call to Bisect, function MathErr() will return one of two error

codes:

e OptOk if no error occurred

e OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

If the starting interval [X, Y] does not contain the root, Bisect will
expand it by calling a procedure RootBrack. This procedure may be called
independently. Its syntax is:

RootBrack(Func, X, Y, FX, FY)

The user must provide initial values for the two numbers X and Y, which
will be refined by the procedure. The corresponding function values are
returned in FX and FY.

8.1.2 Secant method

The secant method also starts with two approximations x and y and generates
a new approximation z from the formula:

Lol -~ yf)
Fw) = /(@)

z is the intersection of the Ox axis with the line connecting the points
(x, f(x)) and (y, f(y)), i. e. the secant.

This method is implemented as:

Secant (Func, X, Y, MaxIter, Tol, F)

The parameters and error codes are the same than in Bisect. Here too,
it is not necessary that the interval [X, Y] contains the root.

8.1.3 Newton-Raphson method

The Newton-Raphson method starts with an approximate root 2° and gener-
ates a new approximation x by using the first-order Taylor series expansion
of function f around z°:

f@) = f(@") + f'(a") - (z —a")

60

If x is sufficiently close to the root, f(x) &~ 0 so:

0 f(xo)

T T a0

This method is implemented as:
NewtEq(Func, Deriv, X, MaxIter, Tol, F)

where Func and Deriv are the procedures which compute the function
and its derivative, respectively (they have the same syntax). The user must
provide the initial approximation X.

After a call to NewtEq, function MathErr () will return one of three error
codes:

e Opt0Ok if no error occurred

e OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

e OptSing if the derivative becomes zero

8.2 Equations in several variables

The goal is to solve a system of n nonlinear equations in n unknowns x, s, - - - T,:
fl(xthu xn) :O
fZ('Ilnya 'In) :O

or, in matrix notation:

where f is a function vector.

8.2.1 Newton-Raphson method

The Newton-Raphson method starts with an approximate root x° and gener-
ates a new approximation x by using the first-order Taylor series expansion
of function f around x°:

f(x) ~ f(x) + DY) - (x — x?)

61

D denotes the jacobian matrix (matrix of first partial derivatives). For in-
stance, for a system of 2 equations in two variables:

f1(331,$2) =0

fa(21,22) =0
the jacobian matrix is:

D(x’) =
g—ﬁ(m(l)a .’ﬂg) a—m(xh .1’2)

If x is sufficiently close to the root, f(x) ~ 0 so:
x=x"-D1x°) f(x")
In practice, it is better to determine a step k in the direction specified by
D 1(xY) - f(x"):
x=x"—k-D'x") - f(x?

The determination of k is performed by line minimization applied to the
sum of squared functions:

This method is implemented as:
NewtEqgs (Equations, Jacobian, X, F, Lb, Ub, MaxIter, Tol)

where Equations and Jacobian are the procedures which compute the
function vector and the jacobian matrix, respectively. Their syntaxes are:

procedure Equations(X, F : PVector);
procedure Jacobian(X : PVector; D : PMatrix);

They correspond to types TEquations and TJacobian, respectively.

The user must provide the initial approximations to the roots in vector
X[Lb..Ub]. After refinement by the procedure, the corresponding function
values are returned in vector F.

The possible error codes returned by MathErr are:

e OptOk if no error occurred

e OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

e OptSing if the jacobian matrix is quasi-singular

62

Approximate jacobian

Approximate values of the jacobian matrix may be computed using finite
difference approximations:

Ofi .\ _ filw; +hy) — filz; — hy)
(9xj (X) - 2h

J

The increment h; is such that h; = n | z; | where 7 is a constant which
should not be less than the square root of the machine epsilon (MachEp'/2).

The demo program testnr.pas gives an example of using such a proce-
dure.

As usual, it is recommended to use analytical expressions for the deriva-
tives whenever possible.

8.2.2 Broyden’s method
This method is similar to the BFGS method of function minimization. It
can also be viewed as a multidimensional version of the secant method.

Broyden’s algorithm uses the following formula to construct the inverse
jacobian matrix iteratively:

(6x = D; - 5f) - ox"| - D;!

Dfl
oxT -D; 1. of

i+1

=D; '+
with:
0x = Xir1 — X of = f(Xi—l—l) — f(Xz)
The algorithm is usually started with the identity matrix (Dy*' = I).

This method is implemented as: Broyden(Equations, X, F, Lb, Ub,
MaxIter, Tol), where the parameters have the same significance than in
NewtEgs.

The possible error codes returned by MathErr are OptOk and OptNonConv.

8.3 Demo programs

8.3.1 Equations in one variable

The demo programs testbis.pas, testsec.pas and testnrl.pas demon-
strate the bisection, secant and Newton-Raphson methods, respectively, on

the equation:
flz)=2zlnz—-1=0

63

for which the derivative is:
f(z)=Inz+1

The true solution is x = 1.763222834...

8.3.2 [Equations in several variables

The demo programs testnr.pas and testbrdn.pas demonstrate the Newton-
Raphson and Broyden methods, respectively, on the following system (taken
from the Numerical Recipes example book) :

flzy)=2>+y"—2=0

gla,y) =exp(r —1) +y* —2=0

for which the jacobian is:
D(z,y) =

The true solution is (z,y) = (1,1).

64

Chapter 9

Polynomials

This chapter describes the procedures and functions related to polynomials
and rational fractions.

9.1 Polynomials

Function Poly (X, Coef, Deg) evaluates the polynomial:

P(X) = Coef[0] + Coef[1] - X + Coef[2] - X* + - - - + Coef[Deg] - X8

9.2 Rational fractions
Function RFrac(X, Coef, Degl, Deg2) evaluates the rational fraction:

(xX) = Coef[0] + Coef[1] - X + - - - + Coef[Degl] - XPeg!
1+ Coef[Degl 4 1] + - - - 4+ Coef[Degl + Deg2] - XPes2

9.3 Roots of polynomials

Analytical methods can be used to compute the roots of polynomials up to
degree 4. For higher degrees, iterative methods must be used.

9.3.1 Analytical methods

e Function RootPol1(A, B, X) solves the linear equation A + BX = 0.
The function returns 1 if no error occurs (B # 0), -1 if X is undeter-
mined (A = B = 0), -2 if there is no solution (A # 0, B = 0).

65

e Functions RootPoln(Coef, Z), with n = 2, 3,4, solve the equation:

Coef[0] + Coef[1] - X + Coef[2] - X* + -+ + Coef[N] - XN =0

The roots are stored in the complex vector Z. The real part of the "
root is in Z~ [i] .X, the imaginary part in Z~ [1] .Y.

If no error occurs, the function returns the number of real roots, oth-
erwise it returns (-1) or (-2) just like RootPol1.

9.3.2 Iterative method

Function RootPol(Coef, Deg, Z) solves the polynomial equation:
ap+ a1z +ar? + - +a,z" =0

by the method of the companion matriz.

The companion matrix A is defined by:

—%n-1 __On=2 ., _ 01 _ 00

171 On o On O’ﬂ

A=| 0 1 0 0
0 0o - 1 0 |

It may be shown that the eigenvalues of this matrix are equal to the roots
of the polynomial (Eigenvalues are treated in § 6.10).

The coefficients of the polynomial are passed in vector Coef, such that
Coef~ [0] = ag, Coef~[2] = a; etc. The degree of the polynomial is passed
in Deg. The roots are returned in the complex vector Z as described before.

If no error occurred, the function returns the number of real roots.

If an error occurred during the search for the i’ root, the function returns
(-i). The roots should be correct for indices (i+1)..Deg. The roots are
unordered.

9.4 Ancillary functions

Two procedures have been added to facilitate the handling of polynomials
roots:

66

e Function SetRealRoots(Deg, Z, Tol) allows to set the imaginary
part of a root to zero if it is less than a fraction Tol of the real part.
The function returns the total number of real roots.

Due to roundoff errors, some real roots may be computed with a very
small imaginary part, e.g. 1+ 107%. The function SetRealRoots tries
to correct this problem.

e Procedure SortRoots(Deg, Z) sort the roots such that:

1. The N real roots are stored in elements 1..N of vector Z, in in-
creasing order.

2. The complex roots are stored in elements (N + 1) ..Deg of vector
Z and are unordered.

9.5 Demo programs

These programs are located in the demo\polynom subdirectory.

9.5.1 Evaluation of a polynomial

Program evalpoly.pas evaluates a polynomial for a series of user-specified
values. Entering 0 stops the program.

9.5.2 Evaluation of a rational fraction

Program evalfrac.pas performs the same task as the previous program,
but with a rational fraction.

9.5.3 Roots of a polynomial

Program polyroot.pas computes the roots of a polynomial with real coef-
ficients. Analytical methods are used up to degree 4, otherwise the method
of the companion matrix is used.

The example polynomial is:
2% — 212° + 1752% — 73523 + 162422 — 1764x + 720

for which the roots are 1, 2 ... 6

67

68

Chapter 10

Numerical integration and
differential equations

This chapter describes the procedures available in TPMath to integrate a
function of one variable, and to solve systems of differential equations.

10.1 Integration

10.1.1 Trapezoidal rule

The trapezoidal rule approximates the integral I of a tabulated function by

the formula:
N—-1

Z (Tig1 — 23)(Yir1 + vi)
=0

l\DI»—t

where (z;,y;) are the coordinates of the " point.

This procedure is implemented as function TrapInt (X, Y, N). Note that
the lower bound of the arrays must be 0.

10.1.2 Gauss-Legendre integration

This method approximates the integral of a function f in an interval [a, b]

by:
/ab f(z)dz ~

b—a b+a
|

Yi =

69

The abscissae x; and weights w; are predefined values for a given number
of points N.

This method is implemented as function GausLeg(Func, A, B) for N =
16. Function Func must be declared as:

function Func(X : Float) : Float;

For the special case A = 0 there is a variant GausLegO (Func, B).

10.2 Convolution

The convolution product of two functions f and g is defined by:

(F)0) = [flu)glt — u)du

This product is often used to describe the ouput of a linear system when
f(t) is the input signal (function of time) and g(¢) is the impulse response of
the system.

Function Convol (Funcl, Func2, T) approximates the convolution prod-
uct of the two functions Funcl and Func2 at time T by the Gauss-Legendre
method. The functions must be declared as above.

10.3 Differential equations

The Runge-Kutta-Fehlberg (RKF) method allows to compute numerical so-
lutions to systems of first-order differential equations of the form:

where the f; are known functions and the y; are to be determined.

The RKF procedure is an extension of the classical Runge-Kutta method.
For instance, in the case of a single differential equation

y'(t) = flt,y(t)]

this method generates a sequence {t,,y,} which approximates the function
y(2).

70

The order of the method corresponds to the number of points used in
the interval [t,,t,.1]. For instance, the sequence generated by the 4-th order
Runge-Kutta method is defined by:

B ki ko ks Ky
yn+1_yn+g+§+§+€

with:

h ky

h ko
ks =h-f{t,+2 =2
ka=h f(t+ oy + ks)

with h =t,.1 —t,

In the RKF method, the step size h is automatically varied so as to
maintain a given level of precision on the estimated y values.

The implementation used in TPMath is a translation of a Fortran pro-
gram by H. A. Watts and L. F. Shampine (http://www.csit.fsu.edu/
“burkardt/f_src/rkf45/rkf45.£90). It is intermediate between the 4-th
and 5-th order Runge-Kutta methods, hence the name RKF45.

In order to use RKF45 you must:

1. Define the following variables (the names are optional):

var
Neqn : Integer; { Number of equations }
Y, Yp : PVector; { Functions and derivatives }
Tstart, Tstop : Float; { Integration interval }
Nstep : Integer; { Number of steps }
StepSize : Float; { Step size }
AbsErr, RelErr : Float; { Abs. and relative errors 1}
Flag : Integer; { Error flag }
T, Tout : Float; { Integration times }
I : Integer; { Loop variable }

2. Define a procedure for computing the system of differential equations:

71

procedure DiffEq(T : Float; Y, Yp : PVector);

begin
Yp~[1] := Y~ [2];
Yp~[2] := - Y"[1];
end;

(There is a special type TDiffEqs for such procedures)

. Initialize variables, compute the step size and call RKF45 for each
integration step (the initial values are given as examples, except for
Flag which must be initialized to 1):

begin
Negn := 2;

DimVector (Y, Neqn);
DimVector(Yp, Neqgn);

Y~[1] :=1; { Initial conditioms }
Y~ [2] := 0;

Tstart := 0;

Tstop := 2 * Pi;

Nstep := 12;

StepSize := (Tstop - Tstart) / Nstep;
AbsErr := 1.0E-6;

RelErr := 1.0E-6;

Flag := 1;

T := Tstart;

for I := 1 to Nstep do
begin
Tout := T + StepSize;
RKF45(DiffEq, Neqn, Y, Yp, T, Tout, RelErr, AbsErr, Flag);
T := Tout;
end;
end.

72

Upon return from RKF45:

e Y, Yp contain the values of the functions and their first derivatives at
Tout

e Flag contains an error code:

* 2 no error

: too small RelErr value

: too much function evaluations needed

: the requested accuracy could not be achieved

2
3
4
* 5 too small AbsErr value
6
7 : the method was unable to solve the problem
8

. invalid input parameters

If an error occurs, it should be possible in most cases to restart the com-
putation, using the values returned by the subroutine in RelErr and AbsErr.

Note : RKF45 may be used to compute a definite integral:

between a and b, with the initial condition specified by f(a).

10.4 Demo programs
These programs are located in the demo\integral subdirectory.

e Program trap.pas applies the trapezoidal rule to a tabulated function.

The example function f(x) = e is tabulated for x = 0 to 1 by steps
of 0.1. The integral is:

1
/ e Tdr = 1— e '~ 0.6321
0

73

Program gauss . pas demonstrates the Gauss-Legendre integration method.

The example function is f(z) = xe *. The integral is:
/ FO)dt =1— (z+1)e®
0

Program conv.pas computes the convolution of two functions by the
Gauss-Legendre method.

The example functions are f(r) = xe™ and g(z) = ¢ 2*. The convo-
lution product is:

(F)@) = [Fgle —wdu= e [Tuedu = (e = 1) — e

Program test_rkf . pas solves 3 systems of differential equations by the
RKF method:

1. A single nonlinear equation:
y'(t) = 0.25 - y(t) - [L — 0.05 - y(¢)]
with the initial condition y(0) = 1.

The analytic solution is:

B 20
1+ 19exp(—0.25t)

y(t)
2. A system of two linear equations:

vi(t) = 2(t)

Yo(t) = =1 (t)
with the initial conditions y;(0) = 1,y2(0) = 0.

The analytic solution is:
yi1(t) = cost yo(t) = —sint
3. A system of 5 equations with one nonlinear:
Y (t) = ya(t)
Ya(t) = ys(t)

74

40[ya (1))

yi"’)(ﬂ =45- y3(t) ’ y4(t) ’ yS(t) - g[yg(t)]Q

with initial conditions y;(0) =1 Vi

The program prints the numeric solution, and, if possible, the analytic
one.

I6)

76

Chapter 11

Fast Fourier Transform

11.1 Introduction

Fourier transform is a mathematical method which allows to determine the
frequency spectrum of a given signal (for instance a sound). The mathemat-
ical definition is the following :

o0

y(f) = /OO x(t) exp(2mi ft)dt :/ x(t)(cos 2w ft +isin2n ft) (11.1)

—0o0 —00

where z(t) is the input signal (function of time), f the frequency, and i
the complex number such that 2 = —1. y is the Fourier transform of .

The input signal may have real or complex values. However, the Fourier
transform is always a complex number. For each frequency f, the modulus
of y(f) represents the energy associated with this frequency. A plot of this
modulus as a function of f gives the frequency spectrum of the input signal.

If the input signal is sampled as a sequence of n values xg, 1, ..., T, 1,
taken at constant time intervals, the Fourier transform is a sequence of com-
plex number yo, y1, ..., Yn_1, Such that:

n—1
Yp =D T [Cos (27rkp> + isin (27Tkp>] (11.2)
= n n

This formula allows, in principle, to compute the transform y, at any
point. In practice, a faster algorithm called the Fast Fourier Transform
(FFT) is used.

7

11.2 Programming

11.2.1 Array dimensioning

The FFT algorithm requires that the number of points n is a power of 2.
Moreover, the arrays must be dimensioned from 0 to (n — 1). For instance:

const
NumSamples = 512; { Buffer size must be power of 2 }
MaxIndex = NumSamples - 1; { Max. array index }

var

InArray, OutArray : PCompVector;

begin
DimVector (InArray, MaxIndex); { FFT input }
DimVector (QutArray, MaxIndex); { FFT output }

The maximal value of n depends on the maximal array size MAX_COMP for
an array of type Complex (see § 6.2). The maximal value of p such that
n = 2P is given by the formula:

p := Trunc(Ln(MAX_COMP) / Ln(2))

For a 32-bit compiler in double precision, p = 26, thus allowing 226 =
67108864 (64 mega) points.

11.2.2 FFT procedures

e Procedure FFT (NumSamples, InArray, OutArray) calculates the Fast
Fourier Transform of the array of complex numbers InArray to produce
the output complex numbers in OutArray.

e Procedure IFFT (NumSamples, InArray, OutArray) calculates the In-
verse Fast Fourier Transform of the array of complex numbers repre-
sented by InArray to produce the output complex numbers in OutArray.

In other words, this procedure reconstitutes the input signal from its
FFT.

78

e Procedure FFT_Integer (NumSamples, RealIn, ImaglIn, OutArray)
computes the Fast Fourier Transform on integer data. Here the real and
imaginary parts of the data are stored in two integer arrays RealIn and
ImagIn, while the results are stored in the complex array OutArray.

e Procedure FFT_Integer Cleanup clears the memory after a call to
FFT_Integer.

e Procedure CalcFrequency(NumSamples, FrequencyIndex, InArray,
FT) calculates the complex frequency sample at a given index directly,
by means of eq. 11.2. The answer is returned in the complex variable
FT. Use this instead of FFT when you only need one or two frequency
samples, not the whole spectrum. It is also useful for calculating the
Fourier Transform of a number of data which is not an integer power of
2. For example, you could calculate the transform of 100 points instead
of rounding up to 128 and padding the extra 28 array slots with zeroes.

11.3 Demo program

Program test_fft.pas, located in the demo\fourier subdirectory, shows
how the Fourier transform may be used to filter a signal. The program plots
several graphics and writes its results to the output file fftout.txt

The example is a 200 Hz sine wave contaminated by a 2000 Hz parasitic
signal. The sampling frequency SamplingRate is 22050 Hz, the number of
points NumSamples is 512 (= 2°). These two numbers determine the time
and frequency units:

DT :
DF :

1 / SamplingRate; { Time unit }
SamplingRate / NumSamples; { Frequency unit }

so that the entry InArray~ [I] in the input array of procedure FFT corre-
sponds to the signal value at time I * DT, and that the entry OutArray~ [I]
in the output array corresponds to the Fourier transform at frequency I *
DF.

The highest frequency which may be detected is equal to SamplingRate/2
and is called Nyquist’s frequency. Hence, only the first half of array OutArray
needs to be plotted (the second half contains symmetric values).

The program generates the input signal, plots it, then performs the FFT
and plots the real and imaginary parts as a function of frequency. The plot

79

shows two peaks, corresponding to the 5-th and 46-th entries in OutArray
(as seen from the file fftout.txt). The corresponding frequencies are:

22050
— _ ~215H
5 X "o 5 Hz

22050
46 x =19 1981 Hz
The high peak corresponds to the main signal and the small peak to
the parasite. To filter the last one, the program sets to zero all the FFT
values corresponding to the frequencies higher than 1000 Hz, according to

the following code:

FreqIndex := Trunc(1000.0 / DF);
MidIndex := NumSamples div 2;
SymIndex := NumSamples - Freqlndex;

for I := 0 to MaxIndex do
begin
if ((I > FreqIndex) and (I < MidIndex)) or
((I >= MidIndex) and (I < SymIndex)) then
begin
OutArray”[I].X :
OutArray~[I].Y :
end;
end;

I

)

0.0
0.0

(note that the two halves of the output array, on either side of Nyquist’s
frequency, must be treated).

The program then calls procedure IFFT to compute the inverse Fourier
transform of the modified data and plots the result, showing that the parasite
has been removed, at the expense of a slight distorsion of the main signal.

In addition, the program performs a direct computation of the Fourier
transform of a set of random complex values, using function CalcFrequency,
and stores the results in the output file, for comparison with the FFT com-
puted on the same data.

30

Chapter 12

Random numbers

This chapter describes the procedures and functions available to generate
random numbers and perform stochastic simulation and optimization.

12.1 Random numbers

12.1.1 Introduction
TPMath provides three random number generators (RNG) :

e the ‘Multiply With Carry’ (MWC) generator of George Marsaglia.

e the ‘Mersenne Twister’ (MT) generator of Takuji Nishimura and Makoto
Matsumoto (http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/
emt.html).

e the ‘Universal Virtual Array Generator’ (UVAG) contributed by Alex
Hay.

The first method produces a sequence {I,,} of integer numbers by means
of the following recurrence relationships:

Iy = (al, + ¢,) mod b

Cni1 = (al, +¢,) div b

where a is the multiplier, b the base (such that b = 2%), ¢, the carry. One
may start with ¢y = 0.

If a is properly chosen, the period of the generator is a x 28! — 1. In
our implementation, a 32-bit integer is generated by concatenating two 16-bit

81

integers, with a; = 18000 and as = 30903. The period of the 32-bit generator
is therefore:

(ay x 2% — 1) x (ag x 2 — 1) ~ 6 x 10"

The second method is more complex and slightly slower but it may be
safer for intensive simulations since it has a much longer period (about 10%90?)
and produces uncorrelated numbers in 623 dimensions.

We have verified that the three generators pass Marsaglia’s DIEHARD
battery of tests (http://stat.fsu.edu/pub/diehard/).

12.1.2 Generic functions

These functions may be used with any of the three generators.

Choice of generator

The generator is chosen by using one of the statements: SetRNG(RNG_MWC),
SetRNG(RNG_MT) or SetRNG(RNG_UVAG). A default initialization is performed
at the same time.

Initialization

The selected generator can be initialized with the statement InitGen(Seed)
where Seed is a 32-bit signed integer (LongInt).

Uniform random numbers

The following functions are available:

Function Type Bits Interval
IRanGen LongInt 32 [-2147483648, 2147483647]
IRanGen31 LongInt 31 [0, 2147483647
RanGenl Float 32 0, 1]

RanGen2 Float 32 [0, 1)

RanGen3 Float 32 (0, 1)
RanGen53 Float 53 [0, 1)

82

12.1.3 Specific functions

The following functions are specific of a given generator:

e Subroutine InitMWC(Seed) initializes the MWC generator with a 32-
bit signed integer.

The default initialization performed by SetRNG corresponds to Seed =
118105245.

e Function IRanMWC returns a 32-bit signed random integer from the
MWC generator.

e Subroutine InitMT(Seed) initializes the MT generator with a 32-bit
signed integer.

e Subroutine InitMTbyArray(InitKey, KeyLength) initializes the MT
generator with an array InitKey[0. . (KeyLength - 1)] of 32-bit signed
integers, with KeyLength < 624.

The default initialization performed by SetRNG corresponds to the vec-
tor ($123, $234, $345, $456).

e Function IRanMT returns a 32-bit signed random integer from the MT
generator.

e Subroutine InitUVAGbyString(KeyPhrase) initializes the UVAG gen-
erator with a string KeyPhrase.

The default initialization performed by SetRNG corresponds to the
string ’abcd’.

e Subroutine InitUVAG(Seed) initializes the UVAG generator with a 32-
bit signed integer.

e Function IRanUVAG returns a 32-bit random signed integer from the
UVAG generator.

12.1.4 Gaussian random numbers

These functions use the selected generator.

33

Normal distribution

e Function RanGaussStd generates a random number from the standard
normal distribution.

The Box-Muller algorithm is used: if x; and x5 are two uniform random
numbers € (0, 1), the two numbers y; and y, defined by:

Y1 =/ —2Inzq cos 2wy Yo =/ —2Inz; sin 2wy

follow the standard normal distribution.

e Function RanGauss(Mu, Sigma) generates a random number from the
normal distribution with mean Mu and standard deviation Sigma.

Multinormal distribution

e Subroutine RanMult(M, L, Lb, Ub, X) generates a random vector X
from a multidimensional normal distribution. M[Lb. .Ub] is the mean
vector, L[Lb..Ub, Lb..Ub] is the Cholesky factor of the variance-
covariance matrix.

To simulate the n-dimensional multinormal distribution N (m, V), where
m is the mean vector and V the variance-covariance matrix, the fol-
lowing algorithm is used:

1. Let u be a vector of n independent random numbers following the
standard normal distribution,

2. Let L be the lower triangular matrix resulting from the Cholesky
factorization of matrix V,

3. Vector x = m+Lu follows the multinormal distribution N'(m, V).

e Subroutine RanMultIndep(M, S, Lb, Ub, X) generatesarandom num-
ber from an uncorrelated multidimensional distribution. Here S is sim-
ply the vector of standard deviations.

12.2 Markov Chain Monte Carlo

It is not always possible to simulate the distribution of a random variable
with a direct algorithm such as the ones used for normal or multinormal
distributions.

84

However, there exist iterative algorithms which generate a sequence of
random variables for which the distribution tend towards the desired distri-
bution, after starting from a standard distribution (e. g. uniform).

These random sequences are known as Markov chains and the itera-
tive simulation method is therefore known as Markov chain Monte-Carlo

(MCMC).

There are several MCMC variants. Here we will present the Metropolis-
Hastings method.

Let X a vector of random variables and P(X) its probability density
function (p.d.f.), which is to be simulated. The classical formulation of the
Metropolis-Hastings algorithm is the following:

1. Choose an initial parameter vector X

2. At iteration n:

(a) Draw a vector u from the multinormal distribution NV (X,,_1, V)
where V is the variance-covariance matrix

(b) If r = P(u)/P(X,,-1) > 1,set X, = u
otherwise if Random(0,1) < r, set X,, = u
where Random(0,1) denotes a uniform random number in the
interval [0,1]

3. Set n =n+1; goto 2

It is convenient to introduce a function F'(X) such that:

P(X) = Cexp [—@] = F(X)=—-TIn @ (12.1)

where C' and T are positive constants. By analogy with statistical ther-
modynamics, 71" is known as the temperature.

From this equation, it may be seen that:

where

AF = F(u) — F(X,_1)

so, the Metropolis-Hastings algorithm may be rewritten as:

85

1. Choose an initial parameter vector Xq

2. At iteration n:

(a) Draw a vector u from the multinormal distribution AV(X,,_1, V)

Set AF = F(u) — F(X,,_1)
(b) if AF <0, set X, =u
otherwise if Random(0,1) < exp(—AF/2), set X,, =u
3. Set n =n+1; goto 2

The initial variance-covariance matrix V may be diagonal and its ele-
ments may be given large values, so that the initial distribution spans a
relatively large space. When the iterations progress, the matrix converges to
the variance-covariance matrix of the simulated distribution. It is often use-
ful to perform several cycles of the algorithm, with the variance-covariance
matrix being re-evaluated at the end of each cycle.

The vector X corresponding to the lowest value of F' is recorded; hence,
the algorithm may be used as a stochastic optimization algorithm for min-
imizing the function F. The advantage of such an algorithm is that it can
‘escape’ from a local minimum (with a probability equal to e=2#/T) and has
therefore more chances to reach the global minimum, unlike the determinis-
tic optimizers studied in chapter 7, for which only decreases of the function
are acceptable. This application is however restricted by the fact that the
function F' must be linked to a p.d.f. by means of eq. (12.1).

This method is implemented in TPMath as:
Hastings(Func, T, X, V, Lb, Ub, Xmat, X_min, F_min)
The user must provide :

e the function Func to be minimized (defined as in paragraph 7.2, p. 50)
e the temperature T
e a starting vector X[Lb. .Ub]

e a starting variance-covariance matrix V[Lb..Ub, Lb..Ub].
On output, Hastings returns:

e the mean of the simulated distribution in X

36

e its variance-covariance matrix in V

a matrix of simulated vectors in Xmat (one vector by line)

the vector which minimizes the function in X_min

the value of the function at the minimum in F_min (corresponds to the
mode of the simulated distribution).

The behavior of the algorithm can be controlled with the following pro-
cedure:

InitMHParams (NCycles, MaxSim, SavedSim)
where:

e NCycles is the number of cycles (default = 10)

e MaxSim is the maximum number of simulations at each cycle (default
= 1000)

e SavedSim is the number of simulated vectors which are saved in matrix
Xmat. Only the last SavedSim vectors from the last cycle are saved.
(default = 1000)

The current values of these parameters can be retrieved with the proce-
dure GetMHParams (NCycles, MaxSim, SavedSim).

After a call to Hastings, function MathErr will return one of the following
codes:

e Opt0Ok if no error occurred

e MatNotPD if the variance-covariance matrix is not positive definite

The random number generator is re-initialized at the start of the algo-
rithm, so that a different result will be obtained for each call of the subrou-
tine.

87

12.3 Simulated Annealing

Simulated annealing (SA) is an extension of the Metropolis-Hastings algo-
rithm which tries to find the global minimum of any function (not necessarily
a p.d.f.). Here the temperature starts from a high value and is progressively
decreased as the algorithm progresses towards the minimum. The optimized
parameters may then be refined with a local optimizer (chapter 7).

The implementations used in TPMath is a modification of a Fortran pro-
gram written by B. Goffe (http://www.netlib.org/simann).

With the notations:

F(X) : function to be minimized

0X : range of X

Frin : minimum of F(X)

T : temperature

Nr : number of loops at constant T'

Ng : number of loops before adjustement of §X
Ry : temperature reduction factor

Naee : number of accepted function increases

the algorithm may be described as follows:

e initialize T, X, 0X
e repeat

o repeat Np times

* repeat Ng times

for each parameter X; :

o pick a random value X in the interval X; + §X;

o compute F(X])

o accept or reject X! according to Metropolis criterion
o update Nyee

¢ update F,;, if necessary

* adjust step length §.X; so as to maintain an acceptance ratio
of about 50%

ol «T- RT
o until Nyee =0 or T' < Ty, OF |Fppin| < €

38

The threshold values T),;,, and € are fixed at 1073% in our implementation.

At the beginning of the iterations, while we are away from the minimum,
it makes sense to choose a high probability of acceptance, for instance p = %
It is then possible to perform a given number of random drawings and to
compute the median M of the increases of function F', from which the initial
temperature 7 is deduced by:

_ (_%>_
p=exp(—7)=

1 M
- T — 2
5 = 0= o

This procedure is implemented in the following subroutine:
SimAnn (Func, X, Xmin, Xmax, Lb, Ub, F_min)
where:

e Func is the function to be minimized (defined as in paragraph 7.2, p.
50)

e X[Lb..Ub] is the parameter vector

e Xmin, Xmax are the bound values of X

The optimized parameters are returned in X and the corresponding func-
tion value in F_min

The user must provide reasonable values of Xmin and Xmax as well as a
starting value for X. It is convenient to pick a random value in the range
specified by Xmin and Xmax.

The behavior of the algorithm can be controlled with the following pro-
cedure:

InitSAParams(NT, NS, NCycles, RT)
where:

e NT, NS, RT correspond to the variables Ny, Ng and Ry in the algo-
rithm. Default values are 5, 15 and 0.9 respectively.

e NCycles is the number of cycles (default = 1).

39

In some difficult situations, it may be useful to perform several cycles of
the algorithm. Each cycle will start with the optimized parameters X from the
previous cycle and the temperature will be re-initialized (the bound values
Xmin, Xmax remaining the same).

It is possible to record the progress of the iterations in a log file. This file
is created with:

SA_CreateLogFile(LogFileName)

If the file is created, the following information will be stored:

iteration number (each iteration corresponds to a single temperature)

temperature value

lowest function value obtained at this temperature

e number of function increases
e number of accepted increases

The file will be automatically closed upon return from SimAnn.

12.4 Genetic Algorithm

Genetic Algorithms (GA) are another class of stochastic optimization meth-
ods which try to mimick the law of natural selection in order to optimize a
function F(X).

There are several implementations of these algorithms. We use a method
described by E. Perrin et al. (Recherche operationnelle / Operations Re-
search, 1997, 31, 161-201). In this version, the vector X is considered as the
‘phenotype’ of an ‘individual” belonging to a ‘population’. This phenotype is
determined by two ‘chromosomes’ C; and C, and a vector of ‘dominances’
D such that:

A population is defined by a matrix P, such that each row of the matrix
corresponds to a vector X.

The population is initialized by taking vectors C; and Cs at random in
a given interval, vector D at random in (0,1) then applying eq. (12.2) to
obtain the corresponding X vectors.

At each step (‘generation’) of the algorithm:

90

1. The function values F(X) are computed for each vector X and the
Ny individuals having the lowest function values (the ‘survivors’) are
selected.

2. The remaining individuals are discarded and replaced by new ones,
generated as follows:

(a) Two ‘parents’ are chosen at random in the selected sub-population
and a ‘child’ is generated by:

e taking the vectors C; and C, at random from the parents
e generating a new vector D
e computing the new X according to eq. (12.2)

This process is repeated until the function value for the child is
lower than the lowest function value of the two parents.

(b) The child is ‘mutated’ (i. e. its vectors are reinitialized at random)
with a probability Mg

(c¢) The child is made ‘homozygous’ (i. e. its vectors C; and C, are
made identical to its vector X) with a probability Hg

This procedure is implemented in the following subroutine:
GenAlg(Func, X, Xmin, Xmax, Lb, Ub, F_min)

where the parameters have the same meaning as in SimAnn.

The behavior of the algorithm can be controlled with the following pro-
cedure:

InitGAParams (NP, NG, SR, MR, HR)
where:

e NP is the population size (default = 200)
e NG is the number of generations (default = 40)
e SR is the survival rate (default = 0.5)

e MR is the mutation rate (default = 0.1)

HR is the probability of homozygosis (default = 0.5)

A log file may also be created with:
GA_CreateLogFile(LogFileName)

The file will contain the iteration (generation) number and the optimized
function value for this generation.

91

12.5 Demo programs

12.5.1 Test of MWC generator

Program testmwc.pas picks 20000 random numbers and displays the next 6
together with the correct values obtained with the default initialization.

12.5.2 Test of MT generator

Program testmt.pas writes 1000 integer numbers and 1000 real numbers
from functions IRanGen and RanGen2, using the default initialization.

The output of this program should be similar to the contents of file mt . txt

12.5.3 Test of UVAG generator

Program testuvag.pas writes 1000 integer numbers from function IRanGen,
using the default initialization. The output should be similar to the contents
of file uvag. txt

12.5.4 File of random numbers

Program randfile.pas generates a binary file of 32-bit random integers to
be used as input for the DIEHARD program. The user must specify the
number of random integers to be generated (default is 3,000,000).

12.5.5 Gaussian random numbers

Program testnorm.pas picks a random sample of size N from a gaussian
distribution with known mean and standard deviation (SD), estimates mean
(m) and SD (s) from the sample, and computes a 95% confidence interval
for the mean (i.e. an interval which has a probability of 0.95 to include the
true mean), using the formula:

S

S
m — 1.96—=,m + 1.96
VN

VN

This formula is valid for N > 30.

92

12.5.6 Multinormal distribution

Program ranmul .pas simulates a multi-normal distribution. The example is
a 3-dimensional distribution with the following means, standard deviations,
and correlation matrix:

1 0.1 1025 0.5
m= | 2 s=10.2 R=] 025 1 —0.25
3 0.3 0.5 —0.25 1

These data are stored in the input file ranmul.dat. The results of the
simulation are stored in file ranmul . out

12.5.7 Multi-lognormal distribution

A vector x is said to follow a multi-lognormal distribution LA (m, V) if the
vector x° defined by:
x; = In(z;)

follows a multinormal distribution A/ (m°, V°)

It may be shown that:
m = In(z;) — Vg

)

Vg =In (1 + L)
mgm;
So, if x° is a random vector drawn from N (m°, V°), x = exp(x°) will be
a vector from LN (m, V)

Program ranmull.pas simulates a multi-lognormal distribution. The ex-
ample is a 2-dimensional distribution with the following means, standard
deviations, and correlation coefficient:

B l 17.4178]

6.1259
5.3173

0510] r = 0.5672

These data are stored in the input file ranmull.dat. The results of the
simulation are stored in file ranmull.out

12.5.8 Markov Chain Monte-Carlo

Although MCMC methods are best suited when there is no direct simulation
algorithm available, we will use the Metropolis-Hastings method to simulate
the previous multinormal distribution (program testmcmc.pas).

93

First, we have to define the function to be optimized. The probability
density for a n-dimensional normal distribution N (m, V) is:
1 1 Ty-1
P(X) = ———exp {—(X ~m) V(X — m)
(2m)"| V| 2

So, according to eq. 12.1, T'= 2 and:
FX)=(X-m) 'V }X - m)

Then, we have to define a starting vector Xg;,, and variance-covariance
matrix V,. In order to show that the algorithm can converge from a point
chosen relatively far away from the optimum, we have chosen Xg;,, = 3m
and Vg, = diag(10V};).

With the default initializations (10 cycles of 1000 simulations each), the
results of a typical run were:

1.01 0.099 A 1 0286 0467
m= | 2.02 s= 0.210 R = 0.286 1 -0.299
3.01 0.320 0.467 —0.299 1

12.5.9 Simulated Annealing

Program simann.pas uses simulated annealing to minimize a set of 10 notori-
ously difficult functions (most of them presenting multiple minima). Several
successive runs of the program may be necessary to have all functions min-
imized (the random number generator being reinitialized at each call of the
SimAnn subroutine).

12.5.10 Genetic Algorithm

Program genalg.pas optimizes the same functions than the previous pro-
gram but with genetic algorithm. Here, too, it may be necessary to run the
program several times.

94

Chapter 13

Statistics

This chapter describes some of the statistical functions available in TPMath.
The specific problem of curve fitting will be considered in subsequent chap-
ters.

13.1 Descriptive statistics

The following functions are available:

e Function Mean(X, Lb, Ub) returns the mean of sample X[Lb..Ub],
defined by:

1.7

where n is the size of the sample.

e Function Median(X, Lb, Ub, Sorted) returns the median of X, de-
fined as the number z,,.,4 which has equal numbers of values above it
and below it. If the array X has been sorted, the median is:

Tmed = Tnt1 (n odd)

1
Tmed = 3 (:L‘% + :U%H) (n even)

The parameter Sorted indicates if array X has been sorted before calling
function Median. If not, it will be sorted within the function (the array
X will therefore be modified).

95

Sorting (in ascending order) is performed by calling a procedure QSort (X,
Lb, Ub) which implements the ‘Quick Sort’ algorithm. Of course, this
procedure may be called outside function Median. There is also a
DQSort for sorting in descending order.

Function StDev(X, Lb, Ub, M) returns the estimated standard devi-
ation of the population from which sample X is extracted, M being the
mean of the sample. This standard deviation is defined by:

s = \J ! :(:cl —m)?

n—1¢

These estimated standard deviations are used in statistical tests.

Function StDevP (X, Lb, Ub, M) returns the standard deviation of X,
considered as a whole population. This standard deviation is defined

by:

Function Correl (X, Y, Lb, Ub) returns the correlation coefficient be-
tween X and Y:

_ Sy (s — mg) (y; — my)
VI (= ma) S (s —)

where m, and m, denote the means of the samples.

r

Function Skewness(X, Lb, Ub, M, Sigma) returns the skewness of X,
with mean M and standard deviation Sigma. This parameter is defined
by:

1 & 3
712@;(%—7”)

Skewness is an indicator of the symmetric nature of the distribution.
It is zero for a symmetric distribution (e. g. Gaussian), and positive
(resp. negative) for an assymetric distribution with a tail extending
towards positive (resp. negative) x values.

Function Kurtosis(X, Lb, Ub, M, Sigma) returns the kurtosis of X,
with mean M and standard deviation Sigma. This parameter is defined

by:

96

Kurtosis is an indicator of the flatness of the distribution. It is zero for a
Gaussian distribution, and positive (resp. negative) if the distribution
is more (resp. less) ‘sharp’ than the Gaussian.

13.2 Comparison of means

13.2.1 Student’s test for independent samples

We have 2 independent samples with sizes nq,ne, means mq, mo, standard
deviations si, so. It is assumed that the samples are taken from gaussian
populations with means uq, s and equal variances. The sample means are
compared by computing the t-statistic:

myp —Mma

sy/1/ny +1/ny
where s? is the estimation of the common variance:
2o - 1)si + (n2 — 1)s3
ny + ng — 2
If n; > 30 and ny > 30, the conditions of normality and equal variances
are no longer required and the formula becomes:
mq — Mo

\/83/n1 + 83 /ns

The null hypothesis is (Hyg) : p1 = po
The alternative hypothesis (H;) depends on the test:
One-tailed test (Hj) : g > po = reject (Hg) if t > t1_,
(Hl) T < o = reject (Ho) if t < t1_a
Two-tailed test (Hy) : juy # po = reject (Ho) if [t| > t1_q/0
where t;_, is the value of the Student variable such that the cumulative
probability function ®,(t) =1 — a at v = ny +ne — 2 d.o.f. (cf. chap. 5).

If Hy is rejected, the difference of the means is considered significant at
risk a

t =

t=

This test is implemented in the following procedure :
StudIndep(N1, N2, M1, M2, S1, S2, T, DoF)

where (N1, N2) are the sizes of the samples, (M1, M2) their means and
(S1, S82) the estimated standard deviations (computed with StDev). The
procedure returns Student’s ¢ in T and the number of degrees of freedom in
DoF.

97

13.2.2 Student’s test for paired samples

If the samples are paired (e. g. the same patients before and after a treat-
ment), the t-statistic becomes:

t="4/n

Sd

where my and s4 are, respectively, the mean and standard deviations of the
differences (z1; — x2;) between the paired values in the two samples, and n is
the common size of the samples.

Apart from this, the test is carried out as with the independent case, with
(n—1)d. o. f.

This test is implemented in the following procedure :
StudPaired(X, Y, Lb, Ub, T, DoF)

where X[Lb..Ub], Y[Lb..Ub] are the two samples. The procedure re-
turns Student’s ¢ in T and the number of degrees of freedom in DoF.

After a call to this procedure, function MathErr returns one of the fol-
lowing error codes:

e FOk (0) if no error occurred
e FSing (-2) if s, =0

e MatErrDim (-3) if X and Y have different sizes.

13.2.3 One-way analysis of variance (ANOVA)

We have k independent samples with sizes n;, means m;, standard deviations
s;. It is assumed that the samples are taken from gaussian populations with
means j; and equal variances. The goal is to compare the k£ means.

The following equation holds:
S8 =85+ 885, (13.1)

with:

k n; k
SSy =3 > (v~ 8Sp =) mi(mi—2)*> S8, =3 (ni—1)s}

=1 j=1 =1 i=1

98

Z is the global mean:

k k
) =1

SS; is the total sum of squares; it has (n — 1) degrees of freedom

5SSy is the factorial sum of squares; it has (k — 1) degrees of freedom.

SS, is the residual sum of squares; it has (n — k) degrees of freedom

Note that the degrees of freedom (d.o.f.) are additive, just like the sums
of squares:
m—1)=(k-1)4+(n—k)

The variances are defined by dividing each sum of squares by the corre-
sponding number of d.o.f.
S5, v, SSy S5,
T k-1 T n—k

‘/;:

n—1

These are the total, factorial, and residual variances, respectively. Note
that the variances, unlike the sum of squares, are not additive!

The comparison of means is performed by computing the F-statistic:
V
=1
V.

The null hypothesis is (Hp) : pg = pg = -+ = g

(Hp) is rejected if F' > Fy_, where F}_, is the value of the Fisher-Snedecor
variable such that the cumulative probability function ®,, ,,(F) =1— «a at
vn=k—1and v, =n —k d.of. (cf. chap. 5).

This algorithm is implemented in the following procedure :
AnOVail(Ns, N, M, S, V_f, V_r, F, DoF_f, DoF_r)

where Ns is the number of samples, N[1..Ns] are the sizes of the sam-
ples, M[1. .Ns] their means and S[1..Ns] the estimated standard deviations
(computed with StDev).

The procedure returns the factorial and residual variances in V_f and V_r,
their ratio in F and their numbers of d. o. f. in DoF_f and DoF_r.

After a call to this procedure, function MathErr returns one of the fol-
lowing error codes:

99

e FOk (0) if no error occurred
e FSing (-2) ifn —k <0

e MatErrDim (-3) if the arrays have non-compatible dimensions

13.2.4 Two-way analysis of variance

We assume here that the means of the samples depend on two factors A and
B, such that the sample corresponding to the i-th level of A and the j-th
level of B has mean m;; and standard deviation s;;.

It is also assumed that all samples are taken from gaussian populations
with equal variances, and that they have the same size n.

The previous equations become:

j:—zznmw

npqz 15=1

P q p q

S8y =3 > (wi—x)* SSp=73> n(my—z)? ii

i=17=1 i=1j5=1 i=1j5=1

with npq — 1, pg — 1, and (n — 1)pq d.o.f., respectively.

In addition, the factorial sum of squares can be splitted into three terms:

p
SS4=qn Z(ml —z)> 5 (p—1)dof.

=1

SSp=pnd (m;—z)* ; (¢—1)dof.

SSap = nZZ(m” —m; —m;+2)° ; (p—1)(¢g—1) dof.

where m; and m ; are the conditional means:
1 q 1 p
:—Zmz‘j m.j=—Zmz~j
q;5 y et

that is, the means of the lines and columns of matrix [m;;]

These sums of squares represent, respectively, the influence of factor A,
the influence of factor B, and the interaction of the two factors (that is, the
fact that the influence of one factor depends on the level of the other factor).

100

The variances are computed as before:

S SA SS B SS AB S Sr
s i A sy i) B ooy
There are three null hypotheses:
(Hp)a : The populations means do not depend on factor A
(Ho)p : The populations means do not depend on factor B
(Ho)ap : There is no interaction between the two factors

Each hypothesis is tested by computing the corresponding F-statistic
(for instance, F'y = V4 /V, for testing (Hp)4) and comparing with the critical
value F_,

Special case: n = 1. If there is only one observation per sample, the
residual variance is zero. The null hypotheses (Hp)a and (Hy)p are tested
with Fiu = V4 /Vap and Fg = Vg /V4p. The interaction of the factors cannot
be tested.

This algorithm is implemented in the following procedure :
AnOVa2(NA, NB, Nobs, M, S, V, F, DoF)

where NA and NB are the number of levels of the factors A and B, Nobs
the common number of observations, N the common size of the samples,
M[1..NA, 1..NB] the matrix of means and S[1..NA, 1..NB] the matrix
of standard deviations, such that the rows correspond to factor A and the
columns to factor B.

The procedure returns the variances in vector V[1..4] = [V, Vg, Vag, V.,
the variance ratios in F[1..3] = [F, Fs, Fap, and the degrees of freedom
in DoF[1..4]. If N = 1, the last element of each vector disappears.

After a call to this procedure, function MathErr returns one of the fol-
lowing error codes:

e FOk (0) if no error occurred

e MatErrDim (-3) if the arrays have non-compatible dimensions.

13.3 Comparison of variances

13.3.1 Comparison of two variances

We have 2 independent samples with sizes nq, nsy, standard deviations sy, s».
It is assumed that the samples are taken from gaussian populations with
variances o3, 03.

101

Snedecor’s test uses the following statistic:
max(si, s3)

min(s{, s3)

which is compared with the critical value Fi_, /o (two-tailed test).
This test is implemented in the following procedure :
Snedecor (N1, N2, S1, S2, F, DoF1, DoF2)

where (N1, N2) are the sizes of the samples and (S1, S2) the estimated
standard deviations. The procedure returns the variance ratio in F and the
numbers of d. o. f. in DoF1 and DoF2.

13.3.2 Comparison of several variances

We have k independent samples with sizes n;, standard deviations s;. It is
assumed that the samples are taken from gaussian populations with variances
o?. The goal is to compare the k variances.

Bartlett’s test uses the following statistic:

B = % [(n—k)anr —Xk:(nz — 1)lns?1

A:”wﬁl—nli : 1]

izlni—l_n—k

where n = Y- n; and V, is the residual variance, as defined previously (§
13.2.3).

The null hypothesis is:

Under (Hy), B follows approximately the x? distribution with (k — 1) d.
o. f. The hypothesis is tested by comparing B with the value x?_, such that

the cumulative probability function ®,(x*) =1 —«a at v = k — 1 d.o.f. (cf.
chap. 5).

This test is implemented in the following procedure :
Bartlett(Ns, N, S, Khi2, DoF)

where Ns is the number of samples, N[1. .Ns] are the sizes of the samples
and S[1..Ns] the estimated standard deviations. The procedure returns
Bartlett’s statistic in Khi2 and the number of d. o. f. in DoF. The error
codes are the same than for AnOVal

102

13.4 Non-parametric tests

Non-parametric tests are used when the assumptions needed by the classical
tests (gaussian populations with equal variances) are not fulfilled. They are
also called rank tests because they work with the ranks of the values, rather
than the values themselves.

13.4.1 Mann-Whitney test

This test compares the means of two independent samples. It is the non-
parametric analog of Student’s test for independent samples.

The test uses the following statistic:
U = min(uy, uz)

with:

ni(m +1 na(ng + 1
U1:n1n2+%—7‘1 ; u2:n1n2+2(+)_r2

where (n1,n2) are the sample sizes, (r1,79) the sums of the ranks of the
two samples.

If n; > 20 and ny > 20, the variable:

with:

_mne \/nmz(nl +n2+1)
2 ’ B 12

follows the standard normal distribution under (Hy).
This test is implemented in the following procedure :
Mann_Whitney(N1, N2, X1, X2, U, Eps)
where N1 and N2 are the sample sizes, X1[1..N1] and X2[1..N2] are the
two samples. The procedure returns Mann-Whitney’s statistic in U and the

associated normal variable in Eps.

103

13.4.2 Wilcoxon test
This test compares the means of two paired samples. It is the non-parametric
analog of Student’s test for paired samples.

The test uses the following statistic:

T =min(T,,T")

where T, and T_ are the sums of the ranks of the positive and negative
differences between the values of the two samples.

If the sample size is N > 25, the variable:

T'—p
T o

€

with:

N(N +1) VNUV+D@N+&)
H=""y 77 24
follows the standard normal distribution under (Hj).
This test is implemented in the following procedure :
Wilcoxon(X, Y, Lb, Ub, Ndiff, T, Eps)

where X[Lb..Ub] and Y[Lb..Ub] are the two samples. The procedure
returns the number of non-zero differences in Ndiff, Wilcoxon’s statistic in
T and the associated normal variable in Eps.

13.4.3 Kruskal-Wallis test

This test compares the means of several independent samples. It is the non-
parametric analog of one-way ANOVA.

The test uses the following statistic:
12 Eor?
H= wnt D) ;n—’i—iﬁ(njtl)
where k is the number of samples, n; the size of sample 7, r; the sum of
the ranks for sample ¢+ and n the total size.
If n; > 5 Vi, H follows the x? distribution with k — 1 d.o.f.
This test is implemented in the following procedure :
Kruskal _Wallis(Ns, N, X, H, DoF)

where Ns is the number of samples, N[1..Ns] is the vector of sizes and
X the sample matrix (with the samples as columns). The procedure returns
the Kruskal-Wallis statistic in H and the number of d. o. f. in DoF.

104

13.5 Statistical distribution

A statistical distribution is generated by binning data into a set of statistical
classes |z;, x;11]. Each class is characterized by the following parameters:

e its bounds x;, x;11
e the number of values n; contained in the class
e the frequency f; = n;/N where N is the total number of values

e the density dz = fi/(xi+1 - $Z>
This structure is implemented in TPMath as:

type StatClass = record { Statistical class }

Inf : Float; { Lower bound }
Sup : Float; { Upper bound }
N : Integer; { Number of values }
F : Float; { Frequency }
D : Float; { Density }
end;

A distribution is generated with the following procedure:

Distrib(X, Lb, Ub, A, B, H, C)

where X [Lb. .Ub] is the original set of values, A and B the lower and upper
bounds of the distribution and H the common width of the classes, according
to the following scheme:

cl1] cl2] C[M]

The distribution is returned in C which is an array of type StatClass.

105

13.6 Comparison of distributions

13.6.1 Observed and theoretical distributions

An observed distribution may be compared to a theoretical one by using the
following statistics:

e Pearson’s y? :

P 2
2 (0; — C)
X =
2 G
e Woolf’'s GG :
P O,
G=2 0;ln—=

where O; and C; denote the observed and theoretical numbers of values
in class 7, and p the number of classes.

The null hypothesis is (Hy): the observed distribution conforms to the
theoretical one (it is a test for conformity)

Under (Hp), both statistics follow the x? distribution with (p — 1 — N,)
d. o. f., where N, is the number of parameters which have been estimated
to compute the C; values (e. g. N, = 2 if the mean and standard deviation
of the distribution have been estimated).

(Hp) is rejected if the chosen statistic is higher than the critical value
x:_,, for the chosen risk a.

Pearson’s statistic is an approximation of Woolf’s statistic. It is usually
recommended to use it only if C; > 5 Vi.

These procedures are implemented as:
Khi2_Conform(N_cls, N_estim, Obs, Calc, Khi2, DoF)
Woolf_Conform(N_cls, N_estim, Obs, Calc, G, DoF)
where N_cls denotes the number of classes, N_estim the number of es-
timated parameters, Obs[1..N_cls] and Calc[1..N_cls] the observed and
theoretical distributions. The statistic is returned in Khi2 or G and the num-

ber of d. o. . in DoF.

106

13.6.2 Several observed distributions

To compare several observed distributions, we can group them into a contin-
gency table O such that O;; denotes the number of values for class ¢ in the
j-th distribution.

The Pearson and Woolf statistics may then be computed as:

" & (045 — Cy)?

=20 i)

=1 7=1
P 4 O
G=2 Z Z Oij In Y
i=1j=1 Cij

where p the number of classes, ¢ the number of distributions, and C;; the
theoretical value of O;;, computed as:

NiN,;

where N; is the sum of terms in line ¢, IV ; is the sum of terms in column j,
and N the global sum of all terms in the matrix (N = 3>, N;, = >, N;).

The null hypothesis is (Hp): the observed distributions come from the
same population (it is a test for homogeneity or independence).

Under (Hy), both statistics follow the x? distribution with (p —1)(¢ — 1)
d. o. f.

These procedures are implemented as:

Khi2_Indep(N_lin, N_col, Obs, Khi2, DoF)
Woolf_Indep(N_lin, N_col, Obs, G, DoF)
where N_1in and N_col are the numbers of lines and columns (i. e. p and

q), and Obs[1..N_1in, 1..N_col] is the matrix of observed distributions.
The statistic is returned in Khi2 or G and the number of d. o. f. in DoF.

13.7 Demo programs

These programs are located in the demo\stat subdirectory of the TPMath
directory.

107

13.7.1 Descriptive statistics, comparison of means and
variances

Program stat.pas performs a statistical analysis of hemoglobin concentra-
tions in two samples of 30 men and 30 women. The computed parameters
are the mean, standard deviation, skewness and kurtosis. The means are
compared by Student’s test (two-tailed) and Mann-Whitney’s test, and the
variances are compared by Snedecor’s test.

13.7.2 Student’s test for paired samples

Program student.pas compares the means of two paired samples, using
Student’s and Wilcoxon’s two-tailed tests.

13.7.3 One-way analysis of variance

Program av1.pas compares the means of 5 independent samples, each with
12 observations, using one-way ANOVA and the Kruskal-Wallis test. In
addition, the variances of the samples are compared with Bartlett’s test.

13.7.4 Two-way analysis of variance

e Program av2.pas compares the means of 4 samples, depending on two
factors, using two-way ANOVA. Each sample contains 12 observations.

e Program av2a.pas performs two-way ANOVA with one observation
per sample.

13.7.5 Statistical distribution

Program histo.pas uses the hemoglobin data from program stat.bas to
generate a statistical distribution.

The first step determines a suitable range for the data. This is done by
calling procedure Interval :
Interval (X~ [1], X" [N], 5, 10, XMin, XMax, XStep);
The arguments 5 and 10 represent the minimal and maximal number of
classes which is desired.

The second step generates the distribution, using the ranges determined
in the previous step:

108

Ncls := Round((Xmax - Xmin) / XStep);
DimStatClassVector(C, Ncls);
Distrib(X, 1, N, Xmin, Xmax, XStep, C);

This distribution is then compared with the normal distribution, using
both x? and Woolf’s tests. The theoretical C; values are computed from the
cumulative probability function for the normal distribution having the same
mean and standard deviation than the observed distribution.

The program plots an histogram of the observed distribution, together
with the curve corresponding to the normal distribution. This curve is gen-
erated from the probability density function:

function PltFunc(X : Float) : Float;
begin

P1tFunc := DNorm((X - M) / S) / S;
end;

where M, S are the mean and standard deviation of the observed distribu-
tion, and DNorm is the probability density of the standard normal distribution
(see chapter 5). Note that the histogram is constructed with the class densi-
ties as ordinates, so that a comparison with the plotted curve can be made.

13.7.6 Comparison of distributions

Program khi2.pas performs both x? and Woolf’s tests, first to compare an
observed distribution with a theoretical one, and then to analyse a contin-
gency table.

109

110

Chapter 14

Linear regression

This chapter describes the routines available in TPMath for fitting a straight
line by linear regression. Other types of curve fitting will be described in
subsequent chapters.

14.1 Straight line fit

The problem is to determine the equation of the line which comes closest to
a set of points.

The model is defined by the equation:
y=a-+bx
e 1 is the independent (or ‘explicative’) variable

e y is the dependent (or ‘explained’) variable

e a and b are the model parameters

Assume that the n points (x1,41), (T2,¥2), - - (T, yn) are perfectly lined,
so that each of them verifies the equation of the straight line:

Y1 = a+ bx,
Yo = a + bxoy
Yn = a+bx,

Or in matrix form:

y = X3 = y—X3=0

where:

U1 1

S A B I S

Yn Ly

In the general case, the points are not exactly lined, so that:
y—Xf=r
where r is the vector of residuals:
r=[r,r-m] =y —§

where §y = X3
It is possible to compute [so that || r || is minimal (least squares crite-
rion).

n

I lP=rlr=ritr+ =3 rf=> (y =) =55
=1 =1

where 7; = a + bx; and S.S, is the sum of squared residuals.

Several methods allow the determination of § under the least squares
criterion. The QR and SVD algorithms have been described previously. Here
we will study the method of normal equations.

It may be shown that (3 is the solution of the system:
Af=c

with:
A=X"X c¢=X"y

SO:
f=A"lc=X"X)'X"y)

The matrices may be expressed in terms of statistical sums:

- n Xx; - i
A= [in Zx?] c= [Exiyi]
Afl _ 1 EQ?? —ZZEZ
oYz - (Bx)? | —Xx; n

- nXa? — (Sx;)? | XXy + nXay;

112

14.2 Analysis of variance
The following equation holds:
SS, = SS. + S8, (14.1)

with:

n n n

SS=> (-9 SSe=>(Gi—09> SS=> (vi—u)

=1 =1 1=1

y is the mean of the y values:

SS; is the total sum of squares; it has (n — 1) degrees of freedom

SS. is the explained sum of squares; it has 1 degree of freedom.

SS, is the residual sum of squares; it has (n — 2) degrees of freedom

Note that the degrees of freedom (d.o.f.) are additive, just like the sums
of squares:
(n—1)=1+(n—-2)

The variances are defined by dividing each sum of squares by the corre-
sponding number of d.o.f.

v, SS V. = S8, V= SS,

These are the total, explained, and residual variances, respectively. Note
that the variances, unlike the sum of squares, are not additive!

The following quantities are derived from the above equations:

e the coefficient of determination r?2

2 _ SS.
SS;
r? represents the percentage of the variations of y which are ‘explained’

by the independent variable. It is always comprised between 0 and 1.
A value of 1 indicates a perfect fit.

r

113

e the correlation coefficient r
It is the square root of the coefficient of determination, with the sign
of the slope b. It is therefore comprised between -1 and 1.

e the residual standard deviation s,

It is the square root of the residual variance (s, = /V;.). It is an esti-
mate of the error made on the measurement of the dependent variable
y. It should be 0 for a perfect fit.

e the variance ratio F

It is the ratio of the explained variance to the residual variance (F =
Ve/V;). Tt should be infinite for a perfect fit.

14.3 Precision of parameters

The matrix:
V=V, A=V - (X'X)!

is called the variance-covariance matrix of the parameters. It is a sym-
metric matrix with the following structure:

v:[Var(a) Cov(a,b)}

Cov(a,b) Var(b)

The diagonal terms are the variances of the parameters, from which the
standard deviations are computed by:

sq = 4/ Var(a) sp =/ Var(b)

The off-diagonal term is the covariance of the two parameters, from which
the correlation coefficient r,, is computed by:

14.4 Probabilistic interpretation

It is assumed that the residuals (y; — y;) are identically and independently
distributed according to a normal distribution with mean 0 and standard
deviation o (estimated by s,).

114

It may be shown that the regression parameters (a,b) are distributed
according to a Student distribution with (n —2) d.o.f.

It is therefore possible to compute a confidence interval for each param-

eter, for instance:

[a — tl_a/g *Sa a—+ tl_a/g : Sa:|

where t;_ /5 is the value of the Student variable corresponding to the chosen
probability « (usually a = 0.05). This interval has a probability (1 — «) to
contain the ‘true’ value of the parameter.

It is also possible to compute a ‘critical’ value Fj_, from the Fisher-
Snedecor distribution with 1 and (n — 2) d.o.f . The fit is considered satis-
factory if the variance ratio F' exceeds 4 times the critical value.

2
Note : for the straight line fit, F;_, = (tl_a/Q)

14.5 Weighted regression

It is assumed here that the variance v; = o2 of the measured value y; is not
constant.

The sums of squares become:
SSy =Y wiy — y)? SSe = wi(g; — y)? 5SS, = wi(y — i)
i=1 i=1 i=1

where w; denotes the ‘weight’, equal to 1/v;, and § denotes the weighted

mean:
n
D i1 Wil

g = n
E’i:l w;

The regression parameters b are estimated by:
b= (X"WX) X "Wy)

where W is the diagonal matrix of weights:

w, 0 -+ 0
W = diag(wy,wy, - w)= | © 200
0 0 0 w,

115

The values of ry, s, and F, as well as the variance-covariance matrix, are
computed as above (§ 14.2). The normalized residual for the i-th observation
Is:

Yi — Ui A
= (% - yi)\/wi

0;
These normalized residuals should follow the standard normal distribution.
14.6 Programming

14.6.1 Regression procedures

The following subroutines are available:
e LinFit(X, Y, Lb, Ub, B, V) for unweighted linear regression
e WLinFit(X, Y, S, Lb, Ub, B, V) for weighted linear regression
The input parameters are:

e X[Lb..Ub], Y[Lb..Ub] : coordinates of points

e S[Lb..Ub] : standard deviations of Y values (noted o; in paragraph
14.5)

The output parameters are:

e B[0..1] : regression parameters
e V[0..1, 0..1] : inverse of the matrix of normal equations (noted A1

in paragraph 15.1.3). This is not the variance-covariance matrix. This
one will be computed by the routines described in the next paragraph.

After a call to one of these procedures, function MathErr returns one of
the following error codes:

e MatOk if no error occurred

e MatSing if the matrix of normal equations is quasi-singular

116

14.6.2 Quality of fit

The parameters used to test the quality of the fit are grouped in a user-defined
type:

type

TRegTest = record { Test of regression }
Vr : Float; { Residual variance }
R2 : Float; { Coefficient of determination }
R2a : Float; { Adjusted coeff. of determination }
F : Float; { Variance ratio (explained/residual) }
Nul, Nu2 : Integer; { Degrees of freedom }

end;

They are computed by the following subroutines:

e RegTest(Y, Ycalc, LbY, UbY, V, LbV, UbV, Test) for unweighted
regression

e WRegTest(Y, Ycalc, S, LbY, UbY, V, LbV, UbV, Test) for weighted
regression

The input parameters are:

e Y[LbY..UbY] : ordinates of points

e Ycalc[LbY..UbY] : Y values computed from the regression equation,
using the fitted parameters B. This computation must be done before
calling RegTest or WRegTest.

e V[LbV..UbV, LbV..UbV] : the inverse matrix of the normal equations,
as returned by the regression procedures.

The output parameters are:

e V : the variance-covariance matrix of the fitted parameters

e Test : variable of type TRegTest, as defined above.

14.7 Demo programs

These programs are located in the demo\curfit subdirectory of the TPMath
directory.

117

14.7.1 Unweighted linear regression

Program reglin.pas performs the least squares fit of a straight line, accord-
ing to the following equation:

Y = B(0) + B(1) * X

The parameter vector and variance-covariance matrix are therefore de-
clared as:

DimVector(B, 1);
DimMatrix(V, 1, 1);

The program calls procedure LinFit, then computes the theoretical Y
values:

for T :=1 to N do
Ycalc”[I] := B~[0] + B~[1] * XX~ [I];
Note that this computation must be done before calling procedure RegTest

The critical values of Student’s ¢t and Snedecor’s F' are computed for the
chosen probability Alpha by using the functions from chapter 5.

Tc :
Fc :

InvStudent(N - 2, 1 - 0.5 * Alpha);
InvSnedecor(l, N - 2, 1 - Alpha);

The ouput shows the standardized residuals, equal to (y; — 9;)/0, where
o is estimated by s,. They should be distributed according to the standard
normal distribution.

14.7.2 Weighted linear regression

Program wreglin.bas performs the weighted least squares fit of a straight
line. Here the standard deviations o; of the observed y values are stored in
a vector S defined by the user.

The computations involve the same steps as with the previous program,
except that procedures WLinFit and WRegTest are used, and that the stan-
dardized residuals are computed as (y; — 4;)/0;

The plot shows the error bars, corresponding to y; & o; for each point.

118

Chapter 15

Multilinear regression and
principal component analysis

This chapter describes the routines available in TPMath for multilinear re-
gression, polynomial regression and principal component analysis.

15.1 Multilinear regression

15.1.1 Normal equations
The regression model is:
y=a-+bry +cry+---

where the x; are m independent variables.

The method of normal equations, studied in chapter 14, is still applicable
with:

1z x2 - 1y
X — 1 2o w2 -+ @y
1 Tpl Tp2 - Tnm

There are p = m + 1 parameters. The number of observations n must be
such that n > p.

Special case: The z; may be functions of another variable x, as long as
these functions do not contain parameters.

Examples:

e Polynomial: y = a + bx + ca? + - --

119

e Fourier series: y = a + bsinx + csin2z + - - -

In such cases, the matrix X, the matrix of normal equations A = XX
and the constant vector ¢ = Xy will have special forms. For instance with
polynomial regression, if d is the degree of the polynomial:

1 oz 22 - 2
2 d
X 1z 25 -+ 25§
2 d
1z, x -
n Y, YD ¥
A Yo, Ya? a2 ... Npdt
Yad Lzt Yadt? ... ¥
XY
c— 2Ty
d
2 Yi

It is possible to use these special forms to simplify the computations. For
instance, only the first line and the last column of the above matrix A need
to be computed; the others terms are deduced by shifting.

15.1.2 Analysis of variance
Equation 14.1 still holds with the following modifications:
e the explained sum of squares SS, has (p — 1) degrees of freedom.

e the residual sum of squares SS, has (n — p) degrees of freedom

Note that the degrees of freedom are still additive:

(n=1)=(@-1)+(—p)
The explained and residual variances become:

S8, S8,

p—1 "oy

The quantities r2, s,, F' are derived as in § 14.1, but here the correlation
coefficient r is always positive.

120

In multilinear regression, the use of 72 may be misleading because it is
always possible to artificially increase its value by adding more independent
variables or using a higher degree polynomial. To overcome this drawback,
the adjusted coefficient of determination may be used instead:

n—1
n—p

r2=1-(1-1%

15.1.3 Precision of parameters

The variance-covariance matrix V is computed as in chapter 14. Itisa pxp
symmetric matrix such that:

e the diagonal term Vj; is the variance of the i-th parameter

o the off-diagonal term V;; is the covariance of the i-th and j-th param-
eters

The correlation coefficient r;; is computed by:

v

e v ViV

15.1.4 Probabilistic interpretation

Assuming that the residuals are identically and independently distributed
according to a normal distribution, the regression parameters are distributed
according to a Student distribution with (n — p) d.o.f. Confidence intervals
may be computed as in chapter 14.

The ‘critical’ value Fi_, is computed from the Fisher-Snedecor distribu-

tion with (p—1) and (n—p) d.o.f. However, the relationship F;_, = (tl_a/g)2
does not hold if p > 2.

15.1.5 Weighted regression

Weighted multilinear regression may be performed as for the simple linear
case (chap. 14).

121

15.1.6 Programming

The following subroutines are available:

e MulFit(X, Y, Lb, Ub, Nvar, ConsTerm, B, V) for unweighted mul-
tilinear regression

X[Lb..Ub, 1..Nvar] isthe matrix of independent variables, Y [Lb. .Ub]
is the vector of dependent variable, and ConsTerm is a boolean param-
eter which indicates the presence of a constant term by. The regression
parameters are returned in B and the inverse matrix in V.

e WMulFit(X, Y, S, Lb, Ub, Nvar, ConsTerm, B, V) for weighted mul-
tilinear regression
The additional parameter S is a vector containing the standard devia-
tions of the observations.

e SVDFit(X, Y, Lb, Ub, Nvar, ConsTerm, SVDTol, B, V)

Same than MulFit but uses singular value decomposition instead of
normal equations. SVDTol is the threshold under which a singular value
is considered zero. It is expressed as a fraction of the highest singular
value (see paragraph 6.9 for details).

e WSVDFit(X, Y, Lb, Ub, Nvar, ConsTerm, SVDTol, B, V)

Same than WMulFit but uses singular value decomposition.

e PolFit(X, Y, Lb, Ub, Deg, B, V) for unweighted polynomial regres-
sion

Here X[Lb..Ub] and Y[Lb..Ub] are the point coordinates and Deg is
the degree of the polynomial.

e WPolFit(X, Y, S, Lb, Ub, Deg, B, V) for weighted polynomial re-

gression

After a call to one of these procedures, function MathErr returns one of
the following error codes:

e MatOk if no error occurred
e MatSing if the matrix of normal equations is quasi-singular

e MatErrDim if the array dimensions do not match

122

15.2 Principal component analysis

15.2.1 Theory

The goal of Principal Component Analysis (PCA) is to replace a set of m
variables x1, Xs, - - - X,,,, Which may be correlated, by another set f, fs, - - - f,,,
called the principal components or principal factors. These factors are inde-
pendent (uncorrelated) variables.

Usually, the algorithm starts with the correlation matriz R which is a
m X m symmetric matrix such that R;; is the correlation coefficient between
variable x; and variable x;.

The eigenvalues A1, Ag, - - A, (in decreasing order) of matrix R are the
variances of the principal factors. Their sum 7 _; \; is equal to m. So, the
percentage of variance associated with the i-th factor is equal to \;/m.

If C is the matrix of eigenvectors of R, the correlation coefficient between
variable x; and factor f; (sometimes called loading) is:

R(jij - Cij \/)\7]

The coordinates of the principal factors (sometimes called scores) are
such that:
F=72C

where Z denotes the matrix of scaled original variables:

iy = N M

Sj

where m; and s; are the mean and standard deviation of the j-th variable.

Note that the reduced variables have means 0 and variances 1, while the
principal factors have means 0 and variances ;.

In most cases, a limited number of principal factors represent the most
part of the total variance. It is therefore possible to neglect the other factors
and to replace the m original (partially correlated) variables by a smaller set
of independent variables. These variables can then be used in a regression
analysis instead of the original ones (orthogonalized regression).

15.2.2 Programming

The following subroutines are available:

123

VecMean(X, Lb, Ub, Nvar, M) computesthe mean vector M[1. .Nvar]
from matrix X[Lb..Ub, 1..Nvar].

VecSD(X, Lb, Ub, Nvar, M, S) computes the standard deviations S[1..Nvar]
from matrix X and mean vector M.

ScaleVar(X, Lb, Ub, Nvar, M, S, Z) computes the scaled variables
Z[Lb..Ub, 1..Nvar] from the original variables X, the means M and
the standard deviations S.

MatVarCov(X, Lb, Ub, Nvar, M, V) computes the variance-covariance
matrix V[1..Nvar, 1..Nvar] from matrix X and mean vector M.

MatCorrel(V, Nvar, R) computes the correlation matrix R[1..Nvar,
1. .Nvar] from the variance-covariance matrix V.

PCA(R, Nvar, MaxIter, Tol, Lambda, C, Rc) performs the princi-
pal component analysis of the correlation matrix R, which is destroyed.
MaxIter and Tol are the maximum number of iterations and the re-
quested tolerance for the Jacobi method (see paragraph 6.10.2). The
eigenvalues are returned in vector Lambdal[l..Nvar], the eigenvec-
tors in the columns of matrix C[1..Nvar, 1..Nvar]. The matrix
Rc[1..Nvar, 1..Nvar] contains the correlation coefficients (loadings)
between the original variables (rows) and the principal factors (columns).

PrinFac(Z, Lb, Ub, Nvar, C, F) computes the principal factors (scores)
F[Lb..Ub, 1..Nvar] from the scaled variables Z and the matrix of
eigenvectors C.

After a call to these procedures, function MathErr returns one of the
following error codes:

e MatOk if no error occurred

e MatErrDim if the array dimensions do not match

e MatNonConv if the iterative procedure (Jacobi method) did not converge
in subroutine PCA

15.3 Demo programs

These programs are located in the demo\curfit subdirectory of the TPMath
directory.

124

15.3.1 Multilinear regression

Program regmult.pas performs a multilinear least squares fit with Nvar =
4 independent variables, according to the following equation:

Y = B(0) + B(1) * X1 + B(2) * X2 + B(3) * X3 + B(4) * X4

The data are stored in a matrix X and a vector Y.

The parameter vector and variance-covariance matrix are declared as:

DimVector (B, Nvar);
DimMatrix(V, Nvar, Nvar);

The program calls procedure MulFit or SVDFit, then computes the the-
oretical Y values:

for I :=1 to N do
begin
if ConsTerm then Ycalc”[I] := B~[0] else Ycalc"[I] := 0.0;
for J := 1 to Nvar do
Ycalc™ [I] := Ycalc™[I] + B~[J] * XX~ [I]"[J];
end;

Note that this computation must be done before calling procedure RegTest

The critical values of Student’s ¢ and Snedecor’s F' are computed for the
chosen probability Alpha by using the functions from chapter 5.

Tc :
Fc :

InvStudent (Test.Nu2, 1 - 0.5 * Alpha);
InvSnedecor(Test.Nul, Test.Nu2, 1 - Alpha);

where Test.Nul and Test.Nu2 are the numbers of d.o.f., returned by
procedure RegTest.

The ouput shows the standardized residuals, equal to (y; — ¢;)/o, where
o is estimated by s,. They should be distributed according to the standard
normal distribution.

Due to the multi-dimensional nature of the relationship, a plot of y as
a function of the x’s is not possible. Rather, the program plots a diagram
of the observed and computed values of y, together with the theoretical line

U=1y.

125

15.3.2 Polynomial regression

Program regpoly.pas performs a polynomial least squares fit. The structure
of the program is very similar to the previous one, with the degree of the
polynomial (Deg) playing the role of the number of variables (Nvar).

Here, only a vector X is needed to store the values of the independent
variable, since the powers of x are computed by the polynomial regression
routine PolFit.

The theoretical Y values are computed by means of function Poly, studied
in chapter 9.

The program plots the fitted curve by calling the plotting subroutine

PlotFunc. The function which is passed to this subroutine is defined as:

function PltFunc(X : Float) : Float;
begin

PltFunc := Poly(X, B, Deg);
end;

The definition of procedure PlotFunc does not allow additional param-
eters for P1tFunc. This is the only reason why the parameter vector B is
declared as a global variable.

15.3.3 Principal component analysis

Program pcatest.pas performs a principal component analysis on a set
of 4 variables (Example taken from: P. DAGNELIE, Analyse statistique a
plusieurs variables, Presses Agronomiques de Gembloux, Belgique, 1982).
The program prints:

e The mean vector and variance-covariance matrix of the original vari-
ables

e The correlation coefficients between the original variables
e The eigenvalues and eigenvectors of the correlation matrix

e The correlation coefficients between the principal factors and the orig-
inal variables

e The values of the principal factors for each point

It may be seen that:

126

High correlations exist between the original variables, which are there-
fore not independent

According to the eigenvalues, the last two principal factors may be
neglected since they represent less than 11 % of the total variance. So,
the original variables depend mainly on the first two factors

The first principal factor is negatively correlated with the second and
fourth variables, and positively correlated with the third variable

The second principal factor is positively correlated with the first vari-
able

The table of principal factors show that the highest scores are usually
associated with the first two principal factors, in agreement with the
previous results

127

128

Chapter 16

Nonlinear regression

This chapter describes the routines available in TPMath for fitting models
which are nonlinear with respect to their parameters. For instance, the ex-

ponential model y = ae~"® is nonlinear with respect to the parameter b.

16.1 Theory

The regression model is:
y = flz;a,b--)
where f is a nonlinear function of the parameters a,b- - -

Assume that we have a first estimate (a®,0°---) of the parameters. Let
us write the Taylor series expansion of y in the vicinity of this estimate:

y=1y"+y,-(a—ad)+y, - (b—0")+--

where:

The equation may be rewritten as:
y—=y’ =y (a—a’) +yp- (b—0") +--
which corresponds to the linear regression problem:

z=J-0

129

with:

0 / /
yi—y Y Y e
v — 1 Vo U - oo
7 — 2 2 J = a2 b2 5 = h—po
Yn — U5 Yon Ybn

where J is the Jacobian matriz, such that y., = df(z;;a°,b°---)/0a etc.

Application of the linear regression relationships leads to:
§=J"N1JI"2) (16.1)

Knowing the correction vector 9, it is possible to compute better estimates
a and b of the parameters. The process is repeated until convergence of the
parameter estimates.

The method so described is known as the Gauss-Newton method. It is
usually combined with nonlinear optimization, usually Marquardt’s method,
in order to minimize the sum of squared residuals:

In this case, the gradient vector g and hessian matrix H of function ® are
computed by the following relationships:

g=-J'z H=J"J (16.2)
so that the Gauss-Newton formula (16.1) becomes equivalent to the Newton-
Raphson formula for nonlinear optimization (p. 51).

Note that, in the previous formula:

1. g and H are scaled by a factor 1/2 since this factor cancels during the
computations.

2. The expression of H is only approximate, since a factor containing the
term (y; — ¥;) is neglected during the computation of the second partial
derivatives:

9*P z": 99: 9y) %0
da Ob da ob T Y% ab

=1

130

The residual variance is:
SS,

n—p

where p is the number of parameters in the model.

V. =

It is still possible to compute r? and F, as well as confidence intervals,
but their interpretation is less straightforward since the ANOVA relationship
(§ 14.1) does not hold for nonlinear models. In this case, r* may be > 1!
Moreover, the distribution of the parameters is only approximately described
by the Student distribution.

16.2 Monte-Carlo simulation

The distribution of the regression parameters may be simulated by the MCMC
method discussed in § 12.2 (p. 84).

Let 3 denote the vector of model parameters. According to Bayes’ the-
orem, the posterior probability density 7(3) of these parameters is given

by:
_ LBPB) _ LB)PE)
JL(B)P(B)dp N
where P([3) denotes the prior probability density of the parameters and

L(3) denotes the likelihood, i.e. the probability of observing the experimental
results (z;,y;) given the parameters.

m(5)

The integral which appears in the denominator is usually too complex to
be calculated and is therefore treated as a normalizing constant N.

Assuming that, for a given 3, the residuals (y; — ;) are identically and
independently distributed according to a normal distribution with variance
o2, the likelihood is given by:

-l 25)

i—1 \oV2m

If we choose a uniform prior probability P(3) over an interval B, the
posterior probability becomes:

m(B)=C ﬁ exp

2
i=1 20

ot

where C is a constant.

131

In order to use the Metropolis-Hastings algorithm, as described in chapter
12.2, we define the function:

—2In ™ =5 (y,—)2 fBEB
F(B) = (16.3)

00 otherwise

It is the same objective function than for the nonlinear regression algo-
rithm, except that it is bounded on the interval B.

16.3 Regression procedures

16.3.1 Optimization methods

TPMath offers three deterministic optimizers: Marquardt, Simplex and BFGS
(see chapter 7) and two stochastic optimizers: Simulated Annealing and Ge-
netic Algorithm (see chapter 12)

The Marquardt method is selected by default. This selection can be
changed with the statement SetOptAlgo(Algo) were Algo may have one of
the following values:

NL_MARQ for Marquardt

NL_SIMP for Simplex

NL_BFGS for BFGS

NL_SA for Simulated Annealing
NL_GA for Genetic Algorithm

16.3.2 Maximal number of parameters

By default, the maximal number of regression parameters is set to 10. This
value may be changed with the statement SetMaxParam(N) where N is a
number up to 255.

16.3.3 Parameter bounds

It is assumed that each regression parameter varies within an interval [a, b].
By default, this interval is set to [—10°, 10°] which is way too large for most
applications. It is possible to change this interval with the statement:

SetParamBounds (I, ParamMin, ParamMax)

132

where I is the index of the parameter and ParamMin and ParamMax are
the bounds.

Defining realistic intervals for the parameters is essential when using
stochastic optimizers.

16.3.4 Nonlinear regression

Nonlinear regression is performed by the two procedures:

° NLFit(RegFunc, DerivProc, X, Y, Lb, Ub, MaxIter, Tol, B, FirstPar,
LastPar, V) for unweighted regression

e WNLFit (RegFunc, DerivProc, X, Y, S, Lb, Ub, MaxIter, Tol, B,
FirstPar, LastPar, V) for weighted regression

where:

e RegFunc is the function to be fitted, defined as:
function RegFunc(X : Float; B : PVector) : Float;

where X is the independent variable and B the vector of regression pa-
rameters. This function is of type TRegFunc.

e DerivProc is the procedure used to compute the partial derivatives of
the regression function with respect to the parameters. It is defined as:

procedure DerivProc(X, Y : Float; B, D : PVector);

where D is the vector of derivatives at point (X, Y) (one row of the
Jacobian). This procedure is of type TDerivProc.

e X[Lb..Ub], Y[Lb..Ub] are the point coordinates and S[Lb..Ub] are
the standard deviations

e MaxIter is the maximum number of iterations for the optimization
procedure

e Tol is the required precision for the regression parameters
e B[FirstPar..LastPar] is the vector of fitted parameters

e V[FirstPar..LastPar, FirstPar..LastPar] isthe inverse matrix (JTJ)f1

133

16.3.5 Monte-Carlo simulation

The statistical distribution of the regression parameters is simulated by the
following procedures:

e SimFit(RegFunc, X, Y, Lb, Ub, B, FirstPar, LastPar, V) for un-
weighted regression

e WSimFit (RegFunc, X, Y, S, Lb, Ub, B, FirstPar, LastPar, V) for
weighted regression

where the parameters have the same meaning than in the nonlinear re-
gression procedures, except that here V is the variance-covariance matrix.

The results of the last simulation cycle are saved in an ASCII file. The
name of this file may be defined by the statement SetMCFile(FileName).
The default file name is mcme. txt

16.4 Demo programs

These programs are located in the demo\curfit subdirectory.

16.4.1 Nonlinear regression

Program regnlin.pas performs a nonlinear least squares fit of the exponen-

tial model:

y = ae "

The partial derivatives used to compute the Jacobian are:

@ _ bz @ _ _al,e—b;t

= e =
da b
Initial estimates of the parameters B are obtained by linearization:
Iny =Ina— bx

However, this transformation modifies the standard deviations of the in-
dependent variables:

o(lny) ~dlny = dy ~ o(y)

))

It is therefore recommended to use weighted linear regression for this step.

134

Subroutine ApproxFit selects the data points for which the transforma-
tion is appropriate (i. e. y > 0) and stores the transformed coordinates and
their standard deviations in 3 vectors X1, Y1, S1 which are passed to the
weighted linear regression subroutine WLinFit. The fitted parameters are
returned in vector A[0..1]. They are then transformed back to the original
form of the model:

B~ [1] := Exp(A~[0]);
B [2] := - A"[1];

Marquardt’s method is then used to perform nonlinear minimization of
the residual sum of squares, by means of subroutine NLFit. Function RegFunc
and procedure DerivProc are defined as follows:

function RegFunc(X : Float; B : PVector) : Float;
begin

RegFunc := B"[1] * Exp(- B~ [2] * X);
end;

procedure DerivProc(X, Y : Float; B, D : PVector);

begin
D~ [1] := Exp(- B"[2] * X);
D~[2] := - B"[1] * X % D~ [1];
end;

Since the parameter lists of these procedures cannot be modified, the
other variables which they must access are made global.

The results of the minimization are printed as with the linear regression
programs, except that the correlation coefficients are shown only if » < 1.

The program may be adapted to another regression model by changing
the following parts:

e the function name (constant FuncName)

e the constants FirstPar and LastPar which define the bounds of the
parameter array B

e the subroutine ApproxFit which computes the initial estimates of the
parameters

e the definition of the regression model in function RegFunc

e the definition of derivatives in subroutine DerivProc

135

16.4.2 Monte-Carlo simulation

Program mcsim.pas simulates the posterior distribution of the regression
parameters for the previous exponential model.

The settings for the MCMC procedure are defined as follows:

const
NCycles = 10; { Number of cycles }
MaxSim = 1000; { Max nb of simulations at each cycle }
SavedSim = 1000; { Nb of simulations to be saved }
MCFile = ’mcsim.txt’; { File for storing simulation results }

The algorithm is initialized with:

InitMHParams (NCycles, MaxSim, SavedSim);
SetMCFile (MCFile) ;

Proper intervals are defined for the two parameters:

SetParamBounds (1, 100, 1000);
SetParamBounds(2, 0.1, 1);

The SimFit procedure is then called. After the computation is done, the
program plots a graph showing the distribution of the parameters.

136

Chapter 17

String functions

Some string functions have been added to TPMath, mainly to help printing
results.

17.1 Trim functions

e function LTrim(S) removes the leading blanks in string S
e function RTrim(S) removes the trailing blanks in string S

e function Trim(S) removes the leading and trailing blanks in string S

17.2 Fill functions

e function RFill(S, L) returns string S completed with trailing blanks
for a total length L

e function LFil1(S, L) returns string S completed with leading blanks
for a total length L

e function CFill(S, L) returns string S completed with leading blanks
so as to center the string on a total length L

e function StrChar (N, C) returns a string made of character C repeated
N times

137

17.3 Character replacement

Subroutine Replace(S, C1, C2) replaces in string S all the occurences of
character C1 by character C2

17.4 Parsing

e function Extract(S, Index, Delim) extracts a field from string S.
Index is the position of the first character of the field. Delim is the
character used to separate fields (e.g. blank, comma or tabulation).
Blanks immediately following Delim are ignored. Index is updated to
the position of the next field.

e procedure Parse(S, Delim, Field, N) parses string S into its con-
stitutive fields. Delim is the field separator. The number of fields is
returned in N. The fields are returned in Field~ [0]..Field" [N - 1].
Field must be dimensioned in the calling program.

17.5 Formatting functions
These functions allow to convert numbers to strings.

e procedure SetFormat (NumLength, MaxDec, FloatPoint, NSZero) de-
fines the numeric format, according to the following parameters:

NumLength : Length of numeric field (default 10)

MaxDec : Max. number of decimal places (default 4)
FloatPoint : Select floating point notation (default False)
NSZero : Write non significant zero’s (default True)

e function FloatStr(X) converts the real number X to a string according
to the numeric format specified by SetFormat

e function IntStr(N) converts the integer N to a string.

e function CompStr(Z : Complex) converts the complex number Z to a
string.

138

