
Arduino Toolkit 0.3.0
a somewhat MATLAB compatible Arduino toolkit for GNU Octave.

John Donoghue

Copyright c© 2018 John Donoghue

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the same conditions as for modified versions.

Distribution

The GNU Octave arduino package is free software. Free software is a matter of the users’ freedom
to run, copy, distribute, study, change and improve the software. This means that everyone
is free to use it and free to redistribute it on certain conditions. The GNU Octave arduino
package is not, however, in the public domain. It is copyrighted and there are restrictions on its
distribution, but the restrictions are designed to ensure that others will have the same freedom
to use and redistribute Octave that you have. The precise conditions can be found in the GNU

General Public License that comes with the GNU Octave arduino package and that also appears
in Appendix A [Copying], page 46.

To download a copy of the GNU Octave arduino package, please visit http: / / octave .

sourceforge.net/arduino/.

http://octave.sourceforge.net/arduino/
http://octave.sourceforge.net/arduino/

i

Table of Contents

1 Installing and loading . 1
1.1 Online Direct install . 1
1.2 Off-line install . 1
1.3 Loading . 1

2 Hardware setup . 2
2.1 Programming the Arduino . 2
2.2 Known Arduino Board Types . 2

3 Connecting to an arduino . 3
3.1 Connecting to a single arduino . 3
3.2 Connecting to a specific arduino . 3
3.3 Querying available arduinos . 3

4 Basic Input and Output Overview . 4
4.1 Performing Digital I/O . 4
4.2 Performing Analog Input . 4

5 Protocol based I/O Overview . 5
5.1 SPI communication . 5
5.2 I2C communication . 5
5.3 Servo communication . 5
5.4 Shift Registers . 5
5.5 Rotary Encoders . 6

6 Addons Overview . 7
6.1 Addon Introduction . 7
6.2 Creating an addon . 7

6.2.1 Addon package directory . 7
6.2.2 Addon package .m file . 7
6.2.3 Addon package header file . 9
6.2.4 Verify octave can see the addon . 11

6.3 Using addons . 11
6.3.1 Programing the arduino with the addon . 11
6.3.2 Creating a addon object . 11

7 Examples . 12
7.1 Blinking an LED . 12
7.2 Using I2C to communicate with an EEPROM . 13
7.3 Using SPI to communicate with a mcp3002 10 bit ADC . 14

8 Function Reference . 16
8.1 General Functions . 16

8.1.1 arduinosetup . 16
8.1.2 isarduino . 16

ii

8.1.3 listArduinoLibraries . 16
8.1.4 scanForArduinos . 17

8.2 Arduino Functions . 17
8.2.1 @arduino/arduino . 17
8.2.2 @arduino/configurePin . 18
8.2.3 @arduino/configurePinResource . 19
8.2.4 @arduino/decrementResourceCount . 19
8.2.5 @arduino/display . 20
8.2.6 @arduino/getI2CTerminals . 20
8.2.7 @arduino/getLEDTerminals . 20
8.2.8 @arduino/getMCU . 20
8.2.9 @arduino/getPWMTerminals . 20
8.2.10 @arduino/getPinInfo . 21
8.2.11 @arduino/getPinsFromTerminals . 21
8.2.12 @arduino/getResourceCount . 21
8.2.13 @arduino/getResourceOwner . 22
8.2.14 @arduino/getSPITerminals . 22
8.2.15 @arduino/getServoTerminals . 22
8.2.16 @arduino/getSharedResourceProperty . 22
8.2.17 @arduino/getTerminalMode . 23
8.2.18 @arduino/getTerminalsFromPins . 23
8.2.19 @arduino/incrementResourceCount . 23
8.2.20 @arduino/isTerminalAnalog . 24
8.2.21 @arduino/isTerminalDigital . 24
8.2.22 @arduino/playTone . 24
8.2.23 @arduino/readAnalogPin . 24
8.2.24 @arduino/readDigitalPin . 25
8.2.25 @arduino/readVoltage . 25
8.2.26 @arduino/reset . 26
8.2.27 @arduino/sendCommand . 26
8.2.28 @arduino/setSharedResourceProperty . 26
8.2.29 @arduino/uptime . 27
8.2.30 @arduino/validatePin . 27
8.2.31 @arduino/version . 27
8.2.32 @arduino/writeDigitalPin . 28
8.2.33 @arduino/writePWMDutyCycle . 28
8.2.34 @arduino/writePWMVoltage . 28

8.3 Arduino I2C Functions . 29
8.3.1 @i2cdev/display . 29
8.3.2 @i2cdev/i2cdev . 29
8.3.3 @i2cdev/read . 29
8.3.4 @i2cdev/readRegister . 30
8.3.5 @i2cdev/subsref . 30
8.3.6 @i2cdev/write . 30
8.3.7 @i2cdev/writeRegister . 31
8.3.8 scanI2Cbus . 31

8.4 Arduino Rotary Encoder Functions . 31
8.4.1 @rotaryEncoder/display . 31
8.4.2 @rotaryEncoder/readCount . 32
8.4.3 @rotaryEncoder/readSpeed . 32
8.4.4 @rotaryEncoder/resetCount . 32
8.4.5 @rotaryEncoder/rotaryEncoder . 32
8.4.6 @rotaryEncoder/subsref . 33

8.5 Arduino Servo Functions . 33

iii

8.5.1 @servo/display . 33
8.5.2 @servo/readPosition . 33
8.5.3 @servo/servo . 34
8.5.4 @servo/subsref . 34
8.5.5 @servo/writePosition . 34

8.6 Arduino Shiftregister Functions . 35
8.6.1 @shiftRegister/display . 35
8.6.2 @shiftRegister/read . 35
8.6.3 @shiftRegister/reset . 35
8.6.4 @shiftRegister/shiftRegister . 35
8.6.5 @shiftRegister/subsref . 36
8.6.6 @shiftRegister/write . 36

8.7 Arduino SPI Functions . 37
8.7.1 @spidev/display . 37
8.7.2 @spidev/spidev . 37
8.7.3 @spidev/subsref . 37
8.7.4 @spidev/writeRead . 38

8.8 Arduino Addons . 38
8.8.1 addon . 38
8.8.2 arduinoioaddons.EEPRomAddon.EEPRom . 38
8.8.3 arduinoioaddons.ExampleAddon.Echo . 39
8.8.4 arduinoioaddons.ExampleLCD.LCD . 40
8.8.5 arduinoioaddons.RTCAddon.DS1307 . 41

8.9 Arduino I/O package . 43
8.9.1 arduinoio.AddonBase . 43
8.9.2 arduinoio.FilePath . 44
8.9.3 arduinoio.LibFiles . 44
8.9.4 arduinoio.LibraryBase . 44
8.9.5 arduinoio.getBoardConfig . 45

Appendix A GNU General Public License . 46

Index . 56

1

1 Installing and loading

The Arduino toolkit must be installed and then loaded to be used.

It can be installed in GNU Octave directly from octave-forge, or can be installed in an off-line
mode via a downloaded tarball.

The toolkit must be then be loaded once per each GNU Octave session in order to use its
functionality.

1.1 Online Direct install

With an internet connection available, the Arduino package can be installed from octave-forge
using the following command within GNU Octave:

pkg install -forge arduino

The latest released version of the toolkit will be downloaded and installed.

1.2 Off-line install

With the arduino toolkit package already downloaded, and in the current directory when running
GNU Octave, the package can be installed using the following command within GNU Octave:

pkg install arduino-0.3.0.tar.gz

1.3 Loading

Regardless of the method of installing the Arduino toolkit, in order to use its functions, the
toolkit must be loaded using the pkg load command:

pkg load arduino

The toolkit must be loaded on each GNU Octave session.

2

2 Hardware setup

In order to use the arduino hardware with the toolkit, it must be programmed with special
firmware.

2.1 Programming the Arduino

To program the hardware, using a default configuration, run the arduinosetup command:

arduinosetup

A temporary Arduino project will be created, with the Arduino toolkit files copied to it and the
Arduino IDE will open.

Set the board type and port correctly for the connected Arduino and press the upload button
on the IDE.

The sources will be compiled and then uploaded to the connected arduino board.

After successful upload the Arduino IDE should be closed.

2.2 Known Arduino Board Types

The board type must be known in order to successfully detect and connect to the Arduino board
after programming.

Currently, known boards are:

• Arduino UNO

• Arduino Mega 2560

• Arduino Nano

• Arduino Pro/Pro Mini

• Sparkfun SAMD21

• Arduino Lilypad

Additional boards can be added easily, however require minor code changes.

3

3 Connecting to an arduino

To control an arduino device, a connection must be made to it by creating an arduino object.

3.1 Connecting to a single arduino

Assuming a single arduino device is connected to the computer, creating an arduino object with
no arguments will find the connected arduino and connect to it:

ar = arduino()

3.2 Connecting to a specific arduino

Where multiple arduinos may be connected to the computer, a specific board can be connected
by specifying the name of the port it is connected to:

ar = arduino("/dev/ttyACM0")

The port name will be operating system dependent.

3.3 Querying available arduinos

To list the ports of all programmed available arduinos, the scanForArduinos function can be
used:

scanForArduinos

It will provide a list of all available boards it can find with the port they are connected to.

4

4 Basic Input and Output Overview

Basic input and output can be performed on a connected arduino device using by calling the
read and write functions for a specific named pin on the arduino.

A list of available pins can get found from the pins property of the connected arduino object
and are also displayed as part of the default shown properties:

ar = arduino();

% get the pin names

pins = ar.availablepins

Pin generally follow a naming scheme of D<number> for digital pins and A<number> for analog
pins.

Digital pins can be used to read and write digital data, but can not read analog voltages. Analog
pins can perform digital I/O as well as reading voltages.

4.1 Performing Digital I/O

A pin’s digital logic value can be true (1) or false (0) and can be set using the writeDigitalPin
function.

The following example attempts to set the D2 pin of the connected arduino object "ar" to true,
waits 5 seconds and then sets it to false:

writeDigitalPin (ar, "d2", true);

pause 5

writeDigitalPin (ar, "d2", false);

Using the readDigitalPin will read the current logic state of the pin.

value = readDigitalPin (ar, "d2");

4.2 Performing Analog Input

For analog pins, the voltage level can be read using a analog to digital conversion and will return
a voltage level between 0 and the boards voltage (nominally 5V):

value = readVoltage (ar, "a0");

The raw digital value of the pin can also be read instead of a voltage, giving a value between 0
and 2^x where x is the number of bits used by the analog to digital converter.

value = readAnalogPin (ar, "a0");

5

5 Protocol based I/O Overview

The arduino toolkit supports more complex I/O for SPI, I2C, Servo control and more.

5.1 SPI communication

SPI communication can be performed by creating a SPI dev object and then calling the
writeRead function:

spi = spidev (ar, "d2");

The function call expects a connected arduino object as the first argument, followed by the chip
select pin of the SPI device.

After a device is created, a write to device followed by read can can be made using the writeRead
function:

spi = spidev (ar, "d2");

data = writeRead (spi, 100);

5.2 I2C communication

I2C communication can be performed by creating an I2C dev object for a specific I2C address.

The following example creates an I2C device that will communicate with a I2C device at address
100"

i2c = i2cdev (ar, 100);

After creating an I2C device, data can be read and written using read, write, readRegister and
writeRegister. The data to send and receive will be device dependent.

5.3 Servo communication

Servo communication can be performed after creating a servo device object to operate on a
PWM pin:

servoobj = servo(ar, "d9", "minpulseduration", 1.0e-3, ...

"maxpulseduration", 2e-3);

The servo function expects the connected arduino object and the PWM pin that the servo is
connected to. Optional properties can be specified to control the setup of device.

In the example, the min and max pulse width values are set.

Using the servo object the current position and be read or set with values ranging between 0 to
1, with 0 being the minimum pulse width and 1 being the maximum.

The following example sets the servo to its middle position.

servoobj = servo(ar, "d9", "minpulseduration", 1.0e-3, ...

"maxpulseduration", 2e-3);

writePosition (servoobj, 0.5);

5.4 Shift Registers

A shift register can be controlled by creating a shiftRegister object:

registerobj = shiftRegister(ar, ’74hc164’, "d2", "d3");

The parameters required are dependent on the type of shift register created.

Once a register object has been created, it can be read and written to using the read and write
functions.

Chapter 5: Protocol based I/O Overview 6

5.5 Rotary Encoders

A rotary encoder can be created by creating a rotaryEncoder object.

encoder = rotaryEncoder(ar, "d2", "d3", 180);

Using the created object, the rotary encoder value and speed can be read.

7

6 Addons Overview

This chapter provides an overview of the arduino package addon functionality for adding addi-
tional addons to arduino.

6.1 Addon Introduction

Addons provide a way of adding additional functionality to the arduino toolkit that provides
matlab access directly to the arduino hardware.

Addons are implemented in two parts.

1. code running on the arduino that implments the required functionality

2. a octave wrapper class that provised the matlab interface and cummunication to the code.

Both parts are required to create a plugin.

The arduino toolkit provides a number of pre-created addons. These can be seen using the
following command:

listArduinoLibraries

The command will display all known arduino libraries (addons as well as core libraries), however
addons typically use a "foldername/classname" for this naming.

See also: listArduinoLibraries.

6.2 Creating an addon

An addon requires at minimum 3 things:

1. A addon directory that will contain the addon files

2. A matlab file within that directory that is a subclass of arduinoio.LibraryBase

3. A arduino source/header file that contains the arduino code to load, subclassed for Library-
Base

So the addon directory structure at a minimum will be:

+arduinoioaddons (dir) [somewhere in the octave load path]

MyAddons (dir)

MyAddon1.m

MyAddon1.h

6.2.1 Addon package directory

The addon architechure looks for plugins in the octave load path in a package directory called
+arduinoioaddons

So this directory nust be created somewhere within the paths that octave will check for functions.

In addition, the addon architecture expects plugins to be contained in a sub directory within
the +arduinoioaddons

Muliple plugin .m files can be within teh same sub directory.

6.2.2 Addon package .m file

The matlab interface file within the addon directory provides the matlab interface for the arduino
code as well as provides information about the addon.

Chapter 6: Addons Overview 8

Class inheritence and required properties

The interface file must be a subclass pf arduinoio.LibraryBase and must contain some constant
properties values that provide the information.

A minumum example of required is below:

classdef MyAddon1 < arduinoio.LibraryBase

properties(Access = protected, Constant = true)

LibraryName = ’MyAddons/MyAddon1’;

CppHeaderFile = fullfile(arduinoio.FilePath(mfilename(’fullpath’)), ’MyAddon1.h’);

CppClassName = ’MyAddon1’;

endproperties

.

.

.

endclassdef

The following constant properties can be set within the addon:

LibraryName
(Required) The name of the addon. My convention this is usually the directoryname
/ theclassname

CppHeaderFile
(Required) The header file for the arduino code

CppSourceFile
(Optional) The source file (if any) for the arduino code

CppClassName
(Required) The classname used within the cppheaderfile for the arduino library

DependantLibraries
(Optional) Any additional addons or cores that are needed for this library to be
used

ArduinoLibraryHeaderFiles
(Optional) Any additional header files that need to be included

Class constructor

The matlab class constructor will be called from the addon function when creating a instance of
the addon and should initialize at least two properties in inherited from arduinoio.LibraryBase:

1. Parent should be set to the first input argument (the auduino class)

2. Pins should be set to a list of pins that are uused for the plugin

classdef MyAddon1 < arduinoio.LibraryBase

.

.

methods

function obj = MyAddon1(parentObj, varargin)

obj.Parent = parentObj;

no pins being used

obj.Pins = [];

send any command to the arduino during setup ?

Chapter 6: Addons Overview 9

endfunction

.

.

endmethods

endclassdef

Class functions

The class functions will usually communicate to the arduino and use the response for what is
returned to the user.

By convention, the commands sent to the arduino are defined as contants in teh class file but
do not have to be.

classdef MyAddon1 < arduinoio.LibraryBase

properties(Access = private, Constant = true)

INIT_COMMAND = hex2dec(’00’);

FUNC1_COMMAND = hex2dec(’01’);

endproperties

.

.

methods

function obj = MyAddon1(parentObj, varargin)

obj.Parent = parentObj;

no pins being used

obj.Pins = [];

send any command to the arduino during setup ?

sendCommand(obj.Parent, obj.LibraryName, obj.INIT_COMMAND, []);

endfunction

function retval = func1(obj)

cmdID = obj.FUNC1_COMMAND;

retval = sendCommand(obj.Parent, obj.LibraryName, cmdID, []);

endfunction

.

.

endmethods

endclassdef

Note the sendCcommand uses the objects parent for the arduino, the objects library name and
the command id.

See also: sendCommand.

6.2.3 Addon package header file

The header file should contain a class that matches the functionaly and information of the
matlab file and provides the ability to register the code on the arduino.

The following things should occur in the arduino class files:

1. The class name within the file must be the same as the one set in the .m file CppClassName
property.

2. The libName variable must be the same as the LibraryName property.

3. The constructor should call registerLibrary

Chapter 6: Addons Overview 10

4. the commandHandler function to act on cmdId values that match the commands that will
be sent from .m file and send data back using sendResponseMsg

5. on recieving unknown cmdId values, the commandHandler should use sendUnknownCm-
dIDMsg

An example, matching the previous .m file code is below:

#include "LibraryBase.h"

#define MYADDON1_INIT 0x00

#define MYADDON1_FUNC1 0x01

class MyAddon1 : public LibraryBase

{

uint8_t cnt;

public:

MyAddon1(OctaveArduinoClass& a)

{

libName = "MyAddons/MyAddon1";

a.registerLibrary(this);

}

void commandHandler(uint8_t cmdID, uint8_t* data, uint8_t datasz)

{

switch (cmdID)

{

case MYADDON_INIT:

{

cnt = 0;

sendResponseMsg(cmdID, 0,0);

break;

}

case MYADDON_FUNC1:

{

// func 1 is just returing a uint8 count of number of times called

cnt ++;

sendResponseMsg(cmdID, &cnt, 1);

break;

}

default:

{

// notify of invalid cmd

sendUnknownCmdIDMsg();

}

}

}

}

The body of functions can be in the CppSourceFile file is it is defined or within the header file
as illustrated above.

Chapter 6: Addons Overview 11

6.2.4 Verify octave can see the addon

Use the listArduinoLibaries command to verify that the new addon appears in the list of known
libraries.

If it does not, ensure that the +arduinoioaddons directory is within one of the octave class paths,
and that the directory strucrure and inheritence requirements have been met.

6.3 Using addons

6.3.1 Programing the arduino with the addon

To use a addon, the code must be programmed onto the arduino.

Using the libraries command, when creating a arduino object, the arduino can be reprgrammed
if the librariy does not already exist on the arduino.

ar = arduino([],[], ’libraries’, ’MyAddons/MyAddon1’, ’forcebuild’, true)

The libraries property of the arduino object should list the libraries propgrammed on the arduino.

Alternatively, the library can be added using the libraries property and arduinosetup

See also: arduino, arduinosetup.

6.3.2 Creating a addon object

An object of the addon type can be created using teh addon command.

ar = arduino([],[], ’libraries’, ’MyAddons/MyAddon1’, ’forcebuild’, true)

obj = addon(ar, "MyAddons/MyAddon1");

12

7 Examples

7.1 Blinking an LED

This example shows blinking the inbuilt LED on the Arduino board. Code is available by
running:

edit examples/example_blink

Hardware setup

This example uses in the builtin LEDS, so requires only a connection of the Arduino board to
computer for communication.

Create an Arduino object

ar = arduino ();

If you have more than one Arduino board connected, you may need to specify the port in order
to connect to the correct device.

Query Device for pins connected to builtin LEDS

The pin connected to the Arduino UNO built in led if D13.

led_pin = "d13";

The connected pins can be queried programatically if desired.

pins = getLEDTerminals (ar);

Connected to a Arduino UNO would return a list pins containing only one item ’13’.

The terminal number can be converted to a pin using getPinsFromTerminals:

led_pin = getPinsFromTerminals (ar, pins{1});

Turn the LED off

Write a 0 value to the pin to turn it off.

writeDigitalPin (ar, led_pin, 0);

Turn the LED on

Write a 1 value to the pin to turn it on

writeDigitalPin (ar, led_pin, 1);

Making the LED blink

Add a while loop with a pause between the changes in the pin state to blink.

while true

writeDigitalPin (ar, led_pin, 0);

pause (0.5)

writeDigitalPin (ar, led_pin, 1);

pause (0.5)

endwhile

Chapter 7: Examples 13

7.2 Using I2C to communicate with an EEPROM

This example shows using I2C to communicate with a EEPROM chip. Code is available by
running:

edit examples/example_i2c_eeprom

Hardware setup

Using an Arduino UNO, the board should be configured with the following connections between
the board and a 24XX256 EEPROM chip:

A4 Connected to pin 5 of EEPROM

A5 Connected to pin 6 of EEPROM

5V Connected to pin 8 of EEPROM

GND Connected to pin 1,2,3,4 of EEPROM

Create an Arduino object

ar = arduino ();

If you have more than one Arduino board connected, you may need to specify the port in order
to connect to the correct device.

Query I2C pins

Display the I2C terminals of the board:

getI2CTerminals(ar)

Scan the arduino for the connected device

scanI2Cbus(ar)

The devices listed should contain 0x50, the address of the EEPROM chip.

Create an I2C object to communicate to the EEPROM

eeprom = i2cdev(ar, 0x50)

Write data to the EEPROM

The EEPROM expects the first byte to be the page number, the second the offset, followed by
data, so to write 1 2 3 4, starting address 0 (page 0, offset 0):

write(eeprom, [0 0 1 2 3 4])

Reading from the EEPROM

Reading from the EEPROM requires first writing the address to read from, in this case, if we
want to read the 3, 4, this would be page 0, offset 2:

write(eeprom, [0 2])

Next read the 2 bytes:

data = read(eeprom, 2)

Chapter 7: Examples 14

7.3 Using SPI to communicate with a mcp3002 10 bit ADC

This example shows using SPI to communicate with an mcp3002 10 bit ADC. Code is available
by running:

edit examples/example_spi_mcp3002

Hardware setup

Using an Arduino UNO, the board should be configured with the following connections between
the board and a mcp3002 chip:

D10 Connected to pin 1 (CS) of MCP3002

D11 Connected to pin 5 (DI) of MCP3002

D12 Connected to pin 6 (DO) of MCP3002

D13 Connected to pin 7 (CLK) MCP3002

VCC Connected to pin 8 (VDD) MCP3002

GND Connected to pin 4 (VSS) MCP3002

Analog input
Connected from pin 2 of the MCP3002 to a LOW (< 5V) voltage to measure

Create an Arduino object

ar = arduino ();

If you have more than one Arduino board connected, you may need to specify the port in order
to connect to the correct device.

Create an SPI object to communicate to the MCP3002

adc = spidev(ar, "d10")

The d10 is the chip select pin connected from the Arduino to the MCP3002.

Read the ADC

The MCP3002 expects specific commands in order to read a channel.

For illustration for the command to read chan 0 in single ended mode:

command (bits) in MSB mode to device:

[START SGL ODN MSBF X X X X] [X X X X X X X X]

1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

[chan 0] MSB

data back:

X X X X X 0 D D D D D D D D D D

D is a output data bit

X is a don’t care what value is input/output

The first byte contains the command and start of the data read back, the second bytes is written
to clock out the rest of the ADC data.

In hex, this corresponds to 0xDF 0xFF,

data = writeRead(adc, [hex2dec("DF") hex2dec("FF")])

Of the data returned, the last 10 bits is the actual data, so convert data to a 16 bit value:

val = uint16(data(1))*256 + uint16(data(2))

15

Then bitand it to remove the non value parts, to get the ADC value:

val = bitand (val, hex2dec(’3FF’))

To make the value correspond to a voltage it needs to be scaled as 0 will be 0 Volts, 1023 will
be 5 Volts.

volts = double(val) * 5.0 / 1023.0;

16

8 Function Reference

The functions currently available in the Arduino toolkit are described below;

8.1 General Functions

8.1.1 arduinosetup

retval = arduinosetup ()
retval = arduinosetup (propertyname, propertyvalue)

Open the arduino config / programming tool to program the arduino hardware for usage with
the Octave arduino functions.

arduinosetup will create a temporary project using the arduino IDE and allow compiling and
programming of the code to an arduino.

Inputs

propertyname, propertyvalue - A sequence of property name/value pairs can be given to set
defaults while programming.

Currently the following properties can be set:

libraries The value should be the name of a library, or string array of libraries to program
on the arduino board.

arduinobinary
The value should be the name/path of the arduino IDE binary for programming.
If not specified, the function will attempt to find the binary itself.

Outputs

retval - return 1 if arduino IDE returned without an error

See also: arduino, arduino binary .

8.1.2 isarduino

retval = isarduino (obj)
Check if input value is an arduino object

Function is essentially just a call of retval = asis(obj, "arduino");

Inputs

obj - The object to check

Outputs

retval is true, if obj is an arduino object, false otherwise.

See also: arduino.

8.1.3 listArduinoLibraries

retval = listArduinoLibraries ()
Retrieve list of all known arduino library modules that are available.

Inputs

None

Chapter 8: Function Reference 17

Outputs

retval is an cell array of string library names that are available for programming to the
arduino.

See also: arduino, arduinosetup.

8.1.4 scanForArduinos

retval = scanForArduinos (maxCount)
retval = scanForArduinos (maxCount, type)

Scan system for programmed arduino boards.

scanForArduinos will scan the system for programmed arduino boards and return at most
maxCount of them as a cell array in retval.

Inputs

maxCount - max number of arduino boards to detect. if maxCount is not specified, or is a
less than 1, the function will return as many arduino boards as it can detect.

type - optional board type to match. If specified, the board type must match for the arduino
to be added to the return list.

Outputs

retval structure cell array of matching detected arduino boards.

Each cell value of the cell array will contain a structure with values of:

port the serial port the arduino is connected to

board the board type of the arduino

See also: arduino.

8.2 Arduino Functions

8.2.1 @arduino/arduino

retval = arduino ()
retval = arduino (port)
retval = arduino (port, board)
retval = arduino (port, board[, [propname, propvalue]*)

Create a arduino object with a connection to an arduino board.

Inputs

port - full path of serial port to connect to. For Linux, usually /dev/ttySXXX, for windows
COMXX.

board - name of board to connect (default is ’uno’).

propname, propvalue - property name and value pair for additional properties to pass to the
creation of the arduino object. Currently properties are ignored.

if the arduino function is called without parameters, it will scan for the first available arduino
it can find and connect to it.

Outputs

retval - a successfully connected arduino object.

Chapter 8: Function Reference 18

Properties

The arduino object has the following public properties:

name name assigned to the arduino object

debug true / false flag for whether debug in turned on

port (read only)
the communications port the board is connected to.

board (read only)
The name of the board type that the arduini connected to

libraries (read only)
The libraries currently programmed onto the board

availablepins
The pins available for use on the board

See also: scanForArduinos, arduinosetup.

8.2.2 @arduino/configurePin

currmode = configurePin (ar, pin)
configurePin (ar, pin, mode)

Set/Get pin mode for a specified pin on arduino connection.

configurePin (ar, pin) will get the current mode of the specified pin.

configurePin (ar, pin, mode) will attempt set the pin to the specified mode if the mode is
unset.

Inputs

ar - the arduino object of the connection to an arduino board.

pin - string name of the pin to set/get the mode of.

mode - string mode to set the pin to.

Outputs

mode - string current mode of the pin.

Valid modes can be:

• AnalogInput - Acquire analog signals from pin

• DigitalInput - Acquire digital signals from pin

• DigitalOutput - Generate digital signals from pin

• I2C - Specify a pin to use with I2C protocol

• Pullup - Specify pin to use a pullup switch

• PWM - Specify pin to use a pulse width modulator

• Servo - Specify pin to use a servo

• SPI - Specify a pin to use with SPI protocol

• Unset - Clears pin designation. The pin is no longer reserved and can be automatically
set at the next operation.

See also: arduino.

Chapter 8: Function Reference 19

8.2.3 @arduino/configurePinResource

currmode = configurePinResource (ar, pin)
configurePinResource (ar, pin, owner, mode)
configurePinResource (ar, pin, owner, mode, force)

Set/Get pin mode for a specified pin on arduino connection.

configurePinResource (ar, pin) will get the current mode of the specified pin.

configurePinResource (ar, pin, owner, mode) will attempt set the pin to the specified mode
and owner.

If the pin is already owned by another owner, the configure will fail unless the force option
is used. If the mode is already set, configure will fail unless force is used.

Inputs

ar - the arduino object of the connection to an arduino board.

pin - string name of the pin to set/get the mode of.

mode - string mode to set the pin to.

owner - string name to use as the pin owner.

force - boolean to force mode change. If not set, it will be false.

Outputs

currmode - current string mode of the pin.

Valid modes can be:

• AnalogInput - Acquire analog signals from pin

• DigitalInput - Acquire digital signals from pin

• DigitalOutput - Generate digital signals from pin

• I2C - Specify a pin to use with I2C protocol

• Pullup - Specify pin to use a pullup switch

• PWM - Specify pin to use a pulse width modulator

• Servo - Specify pin to use a servo

• SPI - Specify a pin to use with SPI protocol

• Reserved - Pin marked researved, but not for of any particular mode

• Unset - Clears pin designation. The pin is no longer reserved and can be automatically
set at the next operation.

See also: arduino, configurePin.

8.2.4 @arduino/decrementResourceCount

count = decrementResourceCount (ar, resource)
Decrement the count of a named resource by 1 and return the new count.

Inputs

ar - connected arduino object

resource - name of resource to decrement count.

Outputs

count = count of uses registered to resource.

See also: getResourceCount. incrementResourceCount.

Chapter 8: Function Reference 20

8.2.5 @arduino/display

display (ar)
Display the arduino object in a verbose way, showing the board and available pins.

Inputs

ar - the arduino object.

If the arduino object has debug mode set, additional information will be displayed.

See also: arduino.

8.2.6 @arduino/getI2CTerminals

pinlist = getI2CTerminals (ar)
Get a cell list of pin Ids available are used for I2C mode.

Inputs

ar - the arduino object.

Outputs

pinlist - cell list of pin numbers available for I2C use.

See also: arduino.

8.2.7 @arduino/getLEDTerminals

pinlist = getLEDTerminals (ar)
Get a cell list of pin Ids available are connected natively to LEDs.

Inputs

ar - the arduino object.

Outputs

pinlist - cell list of pin numbers available for LED use.

See also: arduino.

8.2.8 @arduino/getMCU

mcu = getMCU (ar)
Get the MCU used by the connected arduino.

Inputs

ar - arduino object connected to a arduino board.

Outputs

mcu - string representing the mcu used by the arduino board.

See also: arduino.

8.2.9 @arduino/getPWMTerminals

pinlist = getPWMTerminals (ar)
Get a cell list of pin Ids available for PWM use.

Chapter 8: Function Reference 21

Inputs

ar - the arduino object.

Outputs

pinlist - cell list of pin numbers available for PWM use.

See also: arduino.

8.2.10 @arduino/getPinInfo

pininfo = getPinInfo (ar, pin)
pininfoarray = getPinInfo (ar, pinarray)

Get the pin information from the input pins values.

getPinInfo (ar, pin) will get information for a single pin.

getPinInfo (ar, pinarray) will get a cell array of pin information

Inputs

ar - the connected arduino object.

pin - a pin number or pin name.

pinarray - the array of pin numbers or names

The pininfo struct contains the following fields:

terminal Terminal number of the pin

name String name of the pin

owner Current item owner of the pin

mode Current configured mode for the pin

Outputs

pininfo - struct on pin information.

pininfolist - cell array of pin info

See also: arduino, configurePinResource, getResourceOwner.

8.2.11 @arduino/getPinsFromTerminals

pinnames = getPinsFromTerminals (ar, terminals)
Get the pin names from the input terminal values.

Inputs

ar - the connected arduino object.

terminals - the numeric pin number, or array of pin numbers to get pin names.

Outputs

pinnames - the string names of each input pin. If terminals was a single value, the return
will be a single string, otherwise it will return a cell array of each pin name.

See also: arduino, getTerminalsFromPins.

8.2.12 @arduino/getResourceCount

count = getResourceCount (ar, resource)
Get the count of uses of a given resource.

Chapter 8: Function Reference 22

Inputs

ar - connected arduino object

resource - name of resource to get count for.

Outputs

count = count of uses registered to resource.

See also: incrementResourceCount. decrementResourceCount.

8.2.13 @arduino/getResourceOwner

owner = getResourceOwner (ar, terminal)
Get the owner of pin allocated previously by configurePinResource.

Inputs

ar - connected arduino object

terminal - terminal number to get owner of.

Outputs

owner = owner of the terminal pin, or "" if not owned.

See also: configurePinResource.

8.2.14 @arduino/getSPITerminals

pinlist = getSPITerminals (ar)
Get a cell list of pin Ids available for SPI mode.

Inputs

ar - the arduino object.

Outputs

pinlist - cell list of pin numbers available for SPI use.

See also: arduino.

8.2.15 @arduino/getServoTerminals

pinlist = getServoTerminals (ar)
Get a cell list of pin Ids available for servo use.

Inputs

ar - the arduino object.

Outputs

pinlist - cell list of pin numbers available for servo use.

See also: arduino, getPWMTerminals.

8.2.16 @arduino/getSharedResourceProperty

count = getSharedResourceProperty (ar, resource, property)
Get the value of a property from a given resource.

Chapter 8: Function Reference 23

Inputs

ar - connected arduino object

resource - name of resource to get property for.

property - name of property from the resource.

Outputs

propvalue - value of the property

See also: getResourceCount, setSharedResourceProperty.

8.2.17 @arduino/getTerminalMode

mode = getTerminalMode (ar, terminal)
Get the mode of a pin allocated previously by configurePinResource.

Inputs

ar - connected arduino object

terminal - terminal number to get owner of.

Outputs

mode - mode of the terminal pin, or "not set" if not owned.

See also: configurePinResource, getResourceOwner.

8.2.18 @arduino/getTerminalsFromPins

pinnums = getTerminalsFromPins (ar, pins)
Get the terminal number for each pin.

Inputs

ar - connected arduino object

pins - single pin name or cell or vector array of pin names.

Outputs

pinnums - pin number of each named pin. If the input was a single string, returns a number.
if the input pins was a vector or cell array, return a cell array of pin numbers corresponding
to each input pin name.

See also: arduino, getPinsFromTerminals.

8.2.19 @arduino/incrementResourceCount

count = incrementResourceCount (ar, resource)
Increment the count value of a named resource by 1 and return the new count

Inputs

ar - connected arduino object

resource - name of resource to increment count.

Outputs

count = count of uses registered to resource.

See also: getResourceCount. decrementResourceCount.

Chapter 8: Function Reference 24

8.2.20 @arduino/isTerminalAnalog

ret = isTerminalAnalog (obj, terminal)
Return true if pin is capable of analog input

Inputs

ar - the connected arduino object

terminal is a terminal number to check

Outputs

ret return 1 if terminal is a analog pin, 0 otherwise

8.2.21 @arduino/isTerminalDigital

ret = isTerminalDigital(obj, terminal)
Return true if pin is capable of digital functions

Inputs

ar - the connected arduino object

terminal is a terminal number to check

Outputs

ret return 1 if terminal is a digital pin, 0 otherwise

8.2.22 @arduino/playTone

playTone (ar, pin, freq, duration)
Play a tone of a given frequency on a specified pin.

Inputs

ar - connected arduino object

pin - digital pin to play tone on

freq - frequency in hertz to play between 0 and 32767Hz.

duration duration in seconds to play tone between 0 and 30 seconds

If duration is 0 or not specified, tone will continue to play until next tone is commanded. If
frequency is 0, tone will stop playing

NOTE: use of playTone can interfere with PWM output.

8.2.23 @arduino/readAnalogPin

value = readAnalogPin (ar, pin)
Read analog voltage of pin.

Inputs

ar - connected arduino object.

pin - string name of the pin to read.

Outputs

value - analog value of the pin

Chapter 8: Function Reference 25

Example

ar = arduino ();

readAnalogPin(ar, "A4");

ans =

87

See also: arduino, readVoltage.

8.2.24 @arduino/readDigitalPin

value = readDigitalPin (obj, pin)
Read digital value from a digital I/O pin.

Inputs

ar - connected arduino object.

pin - string name of the pin to read.

Outputs

value - the logical value (0, 1, true false) of the current pin state.

Example

a = arduino ();

pinvalue = readDigitalPin (a, ’D5’);

See also: arduino, writeDigitalPin.

8.2.25 @arduino/readVoltage

voltage = readVoltage (ar, pin)
Read analog voltage of a pin.

Inputs

ar - connected arduino.

pin - pin name or number to query for voltage

Outputs

voltage - scaled pin value as a voltage

Example

ar = arduino ();

readVoltage(ar, "A4");

ans =

1.401

See also: arduino, readAnalogPin.

Chapter 8: Function Reference 26

8.2.26 @arduino/reset

reset (ar)
Send reset command to arduino hardware to force a hardware reset.

Inputs

ar - connected arduino object.

See also: arduino.

8.2.27 @arduino/sendCommand

outdata, outsize = sendCommand (ar, libname, commandid)
outdata, outsize = sendCommand (ar, libname, commandid, data)
outdata, outsize = sendCommand (ar, libname, commandid, data, timeout)

Send a command with option data to the connected arduino, waiting up to a specified number
of seconds for a response.

Inputs

ar - connected arduino object.

libname - library sending the command. The name should match a programmed library of
the arduino, or an error will be displayed.

commandid - integer value for the command being sent to the arduino.

data - optional data sent with the command.

timeout - optional timeout to wait for data

Outputs

outdata - data returned back from the arduino in response to command

outsize - size of data received

If the arduino fails to respond with a valid reply, sendCommand will error.

See also: arduino.

8.2.28 @arduino/setSharedResourceProperty

setSharedResourceProperty (ar, resource, propname, propvalue)
setSharedResourceProperty (ar, resource, propname, propvalue,)

Set property values for a given resource.

Inputs

ar - connected arduino object

resource - name of resource to get property for.

propname - name of property from the resource.

propvalue - value of property from the resource.

Multiple propname, propvalue pairs can be given.

Outputs

None

Chapter 8: Function Reference 27

Example

ar = arduino();

setSharedResourceProperty(ar, "myresource", "myproperty", [1 2 3])

See also: getSharedResourceProperty.

8.2.29 @arduino/uptime

sec = uptime (ar)
Get the number of seconds the arduino board has been running concurrently.

Inputs

ar - the arduino object of the connection to an arduino board.

Outputs

sec - the number seconds the board has been running. Note that the count will wrap around
after approximately 50 days.

See also: arduino.

8.2.30 @arduino/validatePin

validatePin (ar, pin, type)
Validate that the mode is allowed for specified pin

If the mode is not valid, and error will be thrown.

Inputs

ar - connected arduino object

pin - name of pin to query mode validity of

mode - mode to query

Known modes are:

• ’I2C’

• ’SPI’

• ’PWM’

• ’Servo’

• ’analog’

• ’digital’

See also: arduino, configurePin.

8.2.31 @arduino/version

ver = version (ar)
Get version of library code installed on arduino board

Inputs

ar - the arduino object of the connection to an arduino board.

Chapter 8: Function Reference 28

Outputs

ver - version string in format of X.Y.Z.

See also: arduino.

8.2.32 @arduino/writeDigitalPin

writeDigitalPin (ar, pin, value)
Write digital value to a digital I/O pin.

Inputs

ar - connected arduino object.

pin - string name of the pin to write to.

value - the logical value (0, 1, true false) to write to the pin.

If pin was unconfigured before using, pin is set into digital mode.

Example

a = arduino();

writeDigitalPin(a,’D5’,1);

See also: arduino, readDigitalPin.

8.2.33 @arduino/writePWMDutyCycle

writePWMDutyCyle (ar, pin, value)
Set pin to output a square wave with a specified duty cycle.

Inputs

ar - connected arduino object

pin - pin to write to.

value - duty cycle value where 0 = off, 0.5 = 50% on, 1 = always on.

Example

a = arduino();

writePWMDutyCycle(a,’D5’,0.5);

See also: arduino, writePWMVoltage.

8.2.34 @arduino/writePWMVoltage

writePWMVoltage (ar, pin, voltage)
Emulate an approximate voltage out of a pin using PWM.

Inputs

ar - connected arduino object

pin - pin to write to.

voltage - voltage to emulate with PWM, between 0 - 5.0

Chapter 8: Function Reference 29

Example

a = arduino();

writePWMVoltage(a,’D5’,1.0);

See also: arduino, writePWMDutyCycle.

8.3 Arduino I2C Functions

8.3.1 @i2cdev/display

display (dev)
Display i2cdev object.

Inputs

dev - i2cdev object

See also: i2cdev.

8.3.2 @i2cdev/i2cdev

dev = i2cdev (ar, address)
dev = i2cdev (ar, address, propname, propvalue)

Create an i2cdev object to communicate to the i2c port on a connected arduino.

Inputs

ar - connected arduino object

address - address to use for device on I2C bus.

propname, propvalue - property name/value pair for values to pass to devices.

Currently known properties:

bus bus number (when arduino board supports multiple I2C buses) with value of 0
or 1.

Outputs

dev - new created i2cdev object.

Properties

The i2cdev object has the following public properties:

parent The parent (arduino) for this device

pins pins used by this object

bus bus used for created object

address I2C address set for object

See also: arduino.

8.3.3 @i2cdev/read

data = read (dev, numbytes)
data = read (dev, numbytes, precision)

Read a specified number of bytes from a i2cdev object using optional precision for bytesize.

Chapter 8: Function Reference 30

Inputs

dev - connected i2c device opened using i2cdev

numbytes - number of bytes to read.

precision - Optional precision for the output data read data. Currently known precision
values are uint8 (default), int8, uint16, int16

Outputs

data - data read from i2cdevice

See also: arduino, i2cdev.

8.3.4 @i2cdev/readRegister

data = readRegister (dev, reg, numbytes)
data = readRegister (dev, reg, numbytes, precision)

Read a specified number of bytes from a register of an i2cdev object using optional precision
for bytesize.

Inputs

dev - connected i2c device opened using i2cdev

reg - registry value number

numbytes - number of bytes to read.

precision - Optional precision for the output data read data. Currently known precision
values are uint8 (default), int8, uint16, int16

Output

data - data read from device.

See also: arduino, i2cdev.

8.3.5 @i2cdev/subsref

val = subsref (dev, sub)
subref for i2cdev

See also: i2cdev.

8.3.6 @i2cdev/write

write (dev, datain)
write (dev, datain, precision)

Write data to a i2cdev object using optional precision for the data byte used for the data.

Inputs

dev - connected i2c device opened using i2cdev

datain - data to write to device. Datasize should not exceed the constraints of the data type
specified for the precision.

precision - Optional precision for the input write data. Currently known precision values are
uint8 (default), int8, uint16, int16

See also: arduino, i2cdev, read.

Chapter 8: Function Reference 31

8.3.7 @i2cdev/writeRegister

writeRegister (dev, reg, datain)
writeRegister (dev, dev, datain, precision)

Write data to i2cdev object at a given registry position using optional precision for the data
byte used for the data.

Inputs

dev - connected i2c device opened using i2cdev

reg - registry position to write to.

datain - data to write to device. Datasize should not exceed the constraints of the data type
specified for the precision.

precision - Optional precision for the input write data. Currently known precision values are
uint8 (default), int8, uint16, int16

See also: arduino, i2cdev, read.

8.3.8 scanI2Cbus

retval = scanI2Cbus (ar)
retval = scanI2Cbus (ar, bus)

Scan arduino for devices on the I2C bus.

Inputs

ar - arduino object connected to a arduino board.

bus - bus number to scan I2C devices, when multiple buses are available. If the bus is not
specified, it will default to 0.

Outputs

retval - cell array of addresses as strings in format of "0xXX".

Example

create arduino connection.

ar = arduino();

get the pins that will be used for I2C

scanI2Cbus (ar)

% output

ans =

{

[1,1] = 0x50

}

See also: arduino, i2cdev.

8.4 Arduino Rotary Encoder Functions

8.4.1 @rotaryEncoder/display

retval = display (obj)
Display the rotary encoder object in a verbose way,

Chapter 8: Function Reference 32

Inputs

obj - the arduino rotary encoder object created with rotaryEncoder

See also: rotaryEncoder.

8.4.2 @rotaryEncoder/readCount

[count, time] = readCount (obj)
[count, time] = readCount (obj, name, value)

read count value from the rotary encoder.

subsubheading Inputs obj - rotary encoder object created with rotaryEncoder call.

name, value - optional name,value pairs

Valid option name pairs currently are:

reset Reset the count after reading (if true)

Outputs

count - returned count read from the encoder.

time - seconds since arduino started

See also: rotaryEncoder, resetCount.

8.4.3 @rotaryEncoder/readSpeed

speed = readSpeed (obj)
read rotational speed from the rotary encoder.

Inputs

obj - rotary encoder object created with rotaryEncoder call.

Outputs

speed - returned speed in revolutions per minute read from the encoder.

See also: rotaryEncoder, resetCount.

8.4.4 @rotaryEncoder/resetCount

reset (obj)
reset (obj, cnt)

reset the rotary encoder count values

Inputs

obj - the rotaryEncoder object

cnt - optional count value to reset to

See also: rotaryEncoder, readCount.

8.4.5 @rotaryEncoder/rotaryEncoder

obj = rotaryEncoder (ar, chanApin, chanBpin)
obj = rotaryEncoder (ar, chanApin, chanBpin, ppr)

Create a rotaryEncoder object controlled by the input pins.

Chapter 8: Function Reference 33

Inputs

ar - connected arduino object.

chanApin - pin used for channel A

chanBpin - pin used for channel B

ppr - count of encoder pulsed required for a full revolution of the encoder.

Outputs

obj - created rotary encoder object

Example

a = arduino ();

enc = rotaryEncoder(a, "d2", "d3", 180);

Properties

The rotaryEncoder object has the following public properties:

parent The parent (arduino) for this device

pins pins used by this object

ppr Number of pulses used per rotation

See also: arduino.

8.4.6 @rotaryEncoder/subsref

val = subsref (dev, sub)
subref for rotaryEncoder

See also: rotaryEncoder.

8.5 Arduino Servo Functions

8.5.1 @servo/display

display (dev)
Display servo object.

Inputs

dev - device to display

See also: servo.

8.5.2 @servo/readPosition

position = readPosition (servo)
Read the position of a servo

Inputs

servo - servo object created from arduino.servo.

Outputs

position - value between 0 .. 1 for the current servo position, where 0 is the servo min position,
1 is the servo maximum position.

See also: servo, writePosition.

Chapter 8: Function Reference 34

8.5.3 @servo/servo

obj = servo (arduinoobj, pin)
obj = servo (arduinoobj, pin, propertyname, propertyvalue)

Create a servo object using a specified pin on a arduino board.

Inputs

obj - servo object

arduinoobj - connected arduino object

propertyname, propertyvalue - name value pairs for properties to pass to the created servo
object.

Current properties are:

minpulseduration
min PWM pulse value in seconds.

maxpulseduration
max PWM pulse value in seconds.

Outputs

obj - created servo object.

Example

create arduino connection

ar = arduino();

create hobby servo (1 - 2 ms pulse range)

servo = servo(ar, "d9", "minpulseduration", 1.0e-3, "maxpulseduration", 2e-

3);

center the servo

writePosition(servo, 0.5);

Properties

The servo object has the following public properties:

parent The parent (arduino) for this device

pins pins used by this object

minpulseduration
minpusleduration set for object

maxpulseduration
maxpulseduration set for object

See also: arduino, readPosition, writePosition.

8.5.4 @servo/subsref

val = subsref (dev, sub)
subref for servo

See also: servo.

8.5.5 @servo/writePosition

writePosition (servo, position)
Write the position to a servo.

Chapter 8: Function Reference 35

Inputs

servo - servo object created from arduino.servo.

position - value between 0 .. 1 for the current servo position, where 0 is the servo min position,
1 is the servo maximum position.

See also: servo, readPosition.

8.6 Arduino Shiftregister Functions

8.6.1 @shiftRegister/display

retval = display (register)
Display the register object in a verbose way,

Inputs

register - the arduino register object created with shiftRegister.

See also: shiftRegister.

8.6.2 @shiftRegister/read

retval = read (register)
retval = read (register, precision)

read a value from the shift register.

Inputs

register - shift register created from shiftRegister call.

precision - optional precision of the data, where precision can be a number in a multiple of
8 (ie: 8,16,32) or can be a named integer type: 8 of ’uint8’, ’uint16’, ’uint32’. The default
precision is 8.

Outputs

retval - returned data read from the register.

See also: shiftRegister, write.

8.6.3 @shiftRegister/reset

reset (register)
clear the shift register value.

Inputs

register - shift register created from shiftRegister call.

See also: shiftRegister, read, write.

8.6.4 @shiftRegister/shiftRegister

register = shiftRegister (ar, shifttype, dataPin, clockPin ...)
register = shiftRegister (ar,’74hc164’, dataPin, clockPin, resetPin)
register = shiftRegister (ar,’74hc165’, dataPin, clockPin, loadPin,

clockEnablePin)
register = shiftRegister(ar,’74hc595’, dataPin, clockPin, latchPin ,

resetPin)
Create shift register of a given type, controlled by the input pins.

Chapter 8: Function Reference 36

Inputs

Common function parameter definition:

ar - connected arduino object.

shifttype - string name of the shift register type.

dataPin - pin used for data in/out of the device.

clockPin - pin used for clocking data on the shiftRegister.

Other variables are dependent on the shift register type:

’74hc164’ Additional inputs:

resetPin - optional pin for resetting the shift register.

’74hc165’ Additional inputs:

loadPin - load pin to the shift register. clockEnablePin - clock enable pin.

’74hc595’ Additional inputs:

latchPin - latching data to the shift register. resetPin - optional pin for resetting
the shift register.

Outputs

register - register object

Properties

The shiftRegister object has the following public properties:

parent The parent (arduino) for this device

pins pins used by this object

model model set for object

See also: arduino.

8.6.5 @shiftRegister/subsref

val = subsref (dev, sub)
subref for shiftRegister

See also: shiftRegister.

8.6.6 @shiftRegister/write

write (register, dataIn)
write (register, dataIn, precision)

Write a value to the shift register.

Inputs

register - shift register created from shiftRegister call.

dataIn - data to clock into the shiftRegister.

precision - optional precision of the data, where precision can be a number in a multiple
of 8 (ie: 8,16,32) or can be a named integer type of ’uint8’, ’uint16’, ’uint32’. The default
precision is 8.

See also: shiftRegister, read.

Chapter 8: Function Reference 37

8.7 Arduino SPI Functions

8.7.1 @spidev/display

display (dev)
Display spidev object.

Inputs

dev - spidev object to display

See also: spidev.

8.7.2 @spidev/spidev

dev = spidev (ar, cspin)
dev = spidev (ar, cspin, propname, propvalue)

Create an spidev object to communicate to the SPI port on a connected arduino.

Inputs

ar - connected arduino object

cspin - chip select pin for attached spi device.

propname, propvalue - property name/value pair for values to pass to devices.

Currently known properties:

bitrate bit rate speed in Mbs

bitorder ’msbfirst’ or ’lsbfirst’

mode SPI mode 0 - 3.

Outputs

dev - created spidev object

Properties

The spidev object has the following public properties:

parent The parent (arduino) for this device

pins pins used by this object

mode mode used for created object

bitrate Bitrate set for object

bitorder Bitorder set for object

chipselectpin
Pin used for chipselect

See also: arduino, readWrite.

8.7.3 @spidev/subsref

val = subsref (dev, sub)
subref for spidev

See also: spidev.

Chapter 8: Function Reference 38

8.7.4 @spidev/writeRead

dataOut = readWrite (spi, dataIn)
Write uint8 data to spi device and return back clocked out response data of same size.

Inputs

spi - connected spi device on arduino

dataIn - uint8 sized data to send to spi device framed between SS frame.

Outputs

dataOut - uint8 data clocked out during send to dataIn.

See also: arduino, spidev.

8.8 Arduino Addons

8.8.1 addon

retval = addon (ar, addonname)
retval = addon (ar, addonname, varargs)

Create an addon object using the addon named class.

Inputs

ar - connected arduino object

addonname - the name of the addon to create. The addon name can be a user addon or
an inbuilt addon, however must appear in the listArduinoLibraries output and have been
programmed onto the arduino.

varargs - optional values that will be provided verbatim to the the addon class constructor.

Outputs

retval - cell array of string library names.

See also: arduino, arduinosetup, listArduinoLibraries.

8.8.2 arduinoioaddons.EEPRomAddon.EEPRom

arduinoioaddons.EEPRomAddon.EEPRom
EEPROM addon for arduino

Allows read and write of uint8 data to the onboard arduino EEPROM.

Example

Assuming eeprom addon has been programmed into the Arduino:

a = arduino ();

e = addon (a, "eepromaddon/eeprom");

write (e, 0, uint8("hello world"));

str = uint8(read(e, 0, 11))

See also: addon.

Properties

length - Size of the EEPROM.

Chapter 8: Function Reference 39

Methods

eeprom = EEPRom ()

Constructor to create eeprom device.

Outputs

eeprom - created EEPROM device.

erase ()
Erase all values in EEPROM (Effectively setting the 0xFF)

write (address, uintdata)
Write data to EEPROM at the provided address.

Inputs

address - start address to write data to, should be a integer between 0 and the size of the
EEPROM.

uintdata a value or array of uint8 data to write to EEROM.

data = read (address)
data = read (address, count)

Read data from starting address of EEPROM.

Inputs

address - start address to read data from, should be a integer between 0 and the size of the
EEPROM.

count - Number of uint8 values to read from the EEPROM (default is 1)

Outputs

data a value or array of uint8 data read from the EEROM.

8.8.3 arduinoioaddons.ExampleAddon.Echo

arduinoioaddons.ExampleAddon.Echo
Basic Example matlab/octave code to illustrate creating a user addon.

See also: addon.

Properties

Parent - the parent arduino object.

Pins - the pins allocated the addon.

Methods

obj = Echo(arObj)

Constructor to create Echo addon

Inputs

arObj - the arduino parent object

Outputs

obj - created Echo object

response = shout(text)
Send text to arduino and receive back the echoed reply

Chapter 8: Function Reference 40

Inputs

text - text to send to arduino

Outputs

response - response from the arduino, which should be the same as the input text.

8.8.4 arduinoioaddons.ExampleLCD.LCD

arduinoioaddons.LCDAddon.LCD
Basic Example octave addon for LCD

Allows basic manaipulation of an LCD as a illustrayion of using the addon functionality.

Example

Assuming the arduino has been programmed with the lcd addon:

a = arduino();

lcd = addon(a, "examplelcd/lcd", "d8", "d9", "d4", "d5", "d6", "d7")

clearLCD(lcd);

printLCD(lcd, "Hello");

go to next line

gotoLCD(lcd, 0, 1);

printLCD(lcd, "World");

See also: addon.

Properties

Pins - the pins allocated the LCD display.

Methods

lcd = LCD(arObj, rs, enable, d0, d1, d2, d3)
Constructor to create LCD device

Inputs

arObj - the arduino parent object

rs - the pin to use for the rs line.

enable - the pin to use for the enable line.

d0 - the pin to use for the d0 line.

d1 - the pin to use for the d1 line.

d2 - the pin to use for the d2 line.

d3 - the pin to use for the d3 line.

Outputs

lcd - created LCD object

freeLCD()
Free the LCD

Should be called before discarding the LCD

Inputs

None.

Chapter 8: Function Reference 41

Outputs

None.

clearLCD()
Clear the LCD display and set the cursor position to the home position.

Inputs

None.

Outputs

None.

printLCD(text)
Display text on LCD starting at the current cursor position.

Inputs

text - text to display on LCD

Outputs

None.

gotoLCD(col, row)
Set the cursor position to row, col

Inputs

col - 0 indexed LCD column to position to.

row - 0 indexed LCD row to position to.

Outputs

None.

8.8.5 arduinoioaddons.RTCAddon.DS1307

arduinoioaddons.RTCAddon.DS1307
DS1307 addon

See also: addon.

Properties

Parent - the parent arduino object.

Pins - the pins allocated the addon.

Methods

obj = DS1307(arObj)
obj = DS1307(arObj, propertyname, propertyvalue)

Constructor to create DS1307 addon

Inputs

arObj - the arduino parent object

propertyname, propertyvalue - optional property name, value pairs. Current known proper-
ties are:

address I2C address of the DS1307 (default 0x68)

Chapter 8: Function Reference 42

Outputs

obj - created DS1307 object

Example

a = arduino()

rtc = addon(a, "rtcaddon/ds1307")

date = clock(dsObj)
clock(dsObj, date)

Get/set the DS1307 clock

Inputs

dsObj - the ds1307 object

date - a date vector in same format as datevec and clock

Outputs

date - a date vector in same format as datevec and clock

Example

a = arduino()

rtc = addon(a, "rtcaddon/ds1307")

get and display rtc time as a date string

datestr(rtc.clock)

See also: datevec.

ctrl = control(dsObj)
control(dsObj, ctrl)

Get/set the DS1307 clock

Inputs

dsObj - the ds1307 object

ctrl - a structure containing the control bit fields.

Outputs

ctrl - a structure containing the control bit fields.

Control structure fields are: Current properties are:

out Out bit in the control register

sqwe Square wave enable bit in control register

rs The combined RS0, RS1 value

YN = isstarted(dsObj)
Get whether the RTC clock is currently counting time

Inputs

dsObj - the ds1307 object

Chapter 8: Function Reference 43

Outputs

YN - returns true if the RTC is counting

See also: start, stop.

start(dsObj)
Start the RTC counting

Inputs

dsObj - the ds1307 object

Outputs

None

See also: datevec.

stop(dsObj)
Stop the RTC counting

Inputs

dsObj - the ds1307 object

Outputs

None

See also: datevec.

8.9 Arduino I/O package

8.9.1 arduinoio.AddonBase

arduinoio.AddonBase
Base class used for arduino library sensors

See also: arduinoio.LibraryBase.

Properties

Base properties are expected to be inherited and overwritten in inherited classes. and are
constant in order to query through the metaobject mechanism.

Parent - parent librarybase object

Methods

ab = AddonBase ()
Constructor of base class

Outputs

The return value ab is an object of the arduinio.AddonBase class.

See also: arduino, addon.

display ()
Display the addon in a verbose way.

Chapter 8: Function Reference 44

8.9.2 arduinoio.FilePath

retval = arduinoio.FilePath (fullpathname)
Get the directory component of a pathname.

Inputs

fullpathname filepath to get directory component of.

Outputs

retval the directory part of the filename.

8.9.3 arduinoio.LibFiles

filelist = arduinoio.LibFiles ()

Get the list of files used for the building arduino library

Outputs

filelist - string cell array of files for the arduino project

8.9.4 arduinoio.LibraryBase

arduinoio.LibraryBase
Base class used for arduino library plugins

See also: arduino, listArduinoLibraries, addon.

Properties

Base properties are expected to be inhited and overwriiten in inherited classes. and are constant
in order to query through the metaobject mechanism.

LibraryName - name of the addon library

DependentLibraries - array of dependant library names that ust be include when installing this
plugin.

CppHeaderFile - name (if any) of header file that will be included into the arduino project when
adding this library.

CppSourceFile - name (if any) of source file that will be included into the arduino project when
adding this library.

CppClassName - name of the cpp class for the addon library. project when adding this library.

Pins - pins allocated to the addon

Parent - parent arduino object.

Methods

lb = LibraryBase ()
Constructor of base class

The construcor is usually not called but called indirectly from the addon function.

Outputs

The return value lb is an object of the arduinio.LibraryBase class.

See also: arduino, listArduinoLibraries, addon.

display ()
Display the addon in a verbose way.

Chapter 8: Function Reference 45

8.9.5 arduinoio.getBoardConfig

retval = arduinoio.getBoardConfig (boardname)
Return the configuration for a known arduino board type

Function is used to get the expected pin/board configuration for a named board type which
is used to verify and identify the functionality of the board.

Inputs

boardname - name of board to get configuration of ie: "uno"

Outputs

retval configuration struct.

46

Appendix A GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom
to share and change the works. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change all versions of a program—to make sure it remains
free software for all its users. We, the Free Software Foundation, use the GNU General Public
License for most of our software; it applies also to any other work released this way by its
authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs, and that you know you
can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of
the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know
their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on
the software, and (2) offer you this License giving you legal permission to copy, distribute and/or
modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty
for this free software. For both users’ and authors’ sake, the GPL requires that modified versions
be marked as changed, so that their problems will not be attributed erroneously to authors of
previous versions.

Some devices are designed to deny users access to install or run modified versions of the software
inside them, although the manufacturer can do so. This is fundamentally incompatible with
the aim of protecting users’ freedom to change the software. The systematic pattern of such
abuse occurs in the area of products for individuals to use, which is precisely where it is most
unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains, we stand ready to extend
this provision to those domains in future versions of the GPL, as needed to protect the freedom
of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied to a free program could make it
effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

http://fsf.org/

Appendix A: GNU General Public License 47

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee
is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting work
is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer
of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate copy-
right notice, and (2) tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the work under this License,
and how to view a copy of this License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular program-
ming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means
a major essential component (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler used to produce the work,
or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to modify
the work, including scripts to control those activities. However, it does not include the
work’s System Libraries, or general-purpose tools or generally available free programs which
are used unmodified in performing those activities but which are not part of the work. For
example, Corresponding Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication
or control flow between those subprograms and other parts of the work.

Appendix A: GNU General Public License 48

The Corresponding Source need not include anything that users can regenerate automati-
cally from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its content, constitutes
a covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclusively for you, or provide
you with facilities for running those works, provided that you comply with the terms of
this License in conveying all material for which you do not control copyright. Those thus
making or running the covered works for you must do so exclusively on your behalf, under
your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of theWIPO copyright treaty adopted on
20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against the work’s users,
your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an ap-
propriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipients a copy of this License along with the
Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also
meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement
in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable

Appendix A: GNU General Public License 49

section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion
of a covered work in an aggregate does not cause this License to apply to the other parts
of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms
of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy of the Corresponding
Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with such an offer, in accord with
subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy the object code
is a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to
ensure that it is available for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corre-
sponding Source as a System Library, need not be included in conveying the object code
work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything

Appendix A: GNU General Public License 50

designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has substantial commercial, industrial
or non-consumer uses, unless such uses represent the only significant mode of use of the
product.

“Installation Information” for a User Product means any methods, procedures, authoriza-
tion keys, or other information required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corresponding Source. The infor-
mation must suffice to ensure that the continued functioning of the modified object code is
in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in,
a User Product, and the conveying occurs as part of a transaction in which the right of
possession and use of the User Product is transferred to the recipient in perpetuity or for
a fixed term (regardless of how the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to con-
tinue to provide support service, warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation
available to the public in source code form), and must require no special password or key
for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable
to the entire Program shall be treated as though they were included in this License, to the
extent that they are valid under applicable law. If additional permissions apply only to part
of the Program, that part may be used separately under those permissions, but the entire
Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of
this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and
16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it; or

Appendix A: GNU General Public License 51

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material;
or

e. Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who con-
veys the material (or modified versions of it) with contractual assumptions of liability
to the recipient, for any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material gov-
erned by the terms of that license document, provided that the further restriction does not
survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the
third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for
the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify any covered work.
These actions infringe copyright if you do not accept this License. Therefore, by modifying
or propagating a covered work, you indicate your acceptance of this License to do so.

Appendix A: GNU General Public License 52

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License. You
are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or sub-
stantially all assets of one, or subdividing an organization, or merging organizations. If
propagation of a covered work results from an entity transaction, each party to that trans-
action who receives a copy of the work also receives whatever licenses to the work the
party’s predecessor in interest had or could give under the previous paragraph, plus a right
to possession of the Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge
for exercise of rights granted under this License, and you may not initiate litigation (includ-
ing a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed
by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but
do not include claims that would be infringed only as a consequence of further modification
of the contributor version. For purposes of this definition, “control” includes the right to
grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commit-
ment, however denominated, not to enforce a patent (such as an express permission to
practice a patent or covenant not to sue for patent infringement). To “grant” such a patent
license to a party means to make such an agreement or commitment not to enforce a patent
against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license
to downstream recipients. “Knowingly relying” means you have actual knowledge that, but
for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to use, propagate, modify or
convey a specific copy of the covered work, then the patent license you grant is automatically
extended to all recipients of the covered work and works based on it.

Appendix A: GNU General Public License 53

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights
that are specifically granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a)
in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you may not
convey it at all. For example, if you agree to terms that obligate you to collect a royalty
for further conveying from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely from conveying the
Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public
License into a single combined work, and to convey the resulting work. The terms of
this License will continue to apply to the part which is the covered work, but the special
requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a
certain numbered version of the GNU General Public License “or any later version” applies
to it, you have the option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of the GNU General Public License, you may choose any
version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU Gen-
eral Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no addi-
tional obligations are imposed on any author or copyright holder as a result of your choosing
to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-

Appendix A: GNU General Public License 54

ING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MOD-
IFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless
a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively state the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts
in an interactive mode:

program Copyright (C) year name of author

http://www.gnu.org/licenses/

Appendix A: GNU General Public License 55

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Lesser General Public License instead of this License. But first, please read http://www.gnu.

org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

56

Index

A
addon . 38
Addon Introduction . 7
Addon package .m file . 7
Addon package directory . 7
Addon package header file . 9
AddonBase . 43
Addons Overview . 7
arduino . 17
Arduino Addons . 38
Arduino Functions . 17
Arduino I/O package . 43
Arduino I2C Functions . 29
Arduino Rotary Encoder Functions 31
Arduino Servo Functions . 33
Arduino Shiftregister Functions 35
Arduino SPI Functions . 37
arduinosetup . 16

B
Basic Input and Output Overview 4
Blinking an LED . 12

C
configurePin . 18
configurePinResource . 19
Connecting to a single arduino . 3
Connecting to a specific arduino 3
Connecting to an arduino . 3
copyright . 46
Creating a addon object . 11
Creating an addon . 7

D
decrementResourceCount . 19
display . 20, 29, 31, 33, 35, 37
DS1307 . 41

E
Echo . 39
EEPRom . 38
Examples . 12

F
FilePath . 44
Function Reference . 16

G
General Functions . 16
getBoardConfig . 45
getI2CTerminals . 20
getLEDTerminals . 20
getMCU . 20
getPinInfo . 21
getPinsFromTerminals . 21
getPWMTerminals . 20
getResourceCount . 21
getResourceOwner . 22
getServoTerminals . 22
getSharedResourceProperty . 22
getSPITerminals . 22
getTerminalMode . 23
getTerminalsFromPins . 23

H
Hardware setup . 2

I
i2cdev . 29
I2C communication . 5
incrementResourceCount . 23
Installing and loading . 1
isarduino . 16
isTerminalAnalog . 24
isTerminalDigital . 24

K
Known Arduino Board Types . 2

L
LCD . 40
LibFiles . 44
LibraryBase . 44
listArduinoLibraries . 16
Loading . 1

O
Off-line install . 1
Online install . 1

P
Performing Analog Input . 4
Performing Digital I/O . 4
playTone . 24
Programing the arduino with the addon 11
Programming the Arduino . 2
Protocol based I/O Overview . 5

Index 57

Q
Querying available arduinos . 3

R
read . 29, 35
readAnalogPin . 24
readCount . 32
readDigitalPin . 25
readPosition . 33
readRegister . 30
readSpeed . 32
readVoltage . 25
reset . 26, 35
resetCount . 32
Rotary Encoder . 6
rotaryEncoder . 32

S
scanForArduinos . 17
scanI2Cbus . 31
sendCommand . 26
servo . 34
Servo communication . 5
setSharedResourceProperty . 26
Shift Registers . 5
shiftRegister . 35

SPI communication . 5
spidev . 37
subsref . 30, 33, 34, 36, 37

U
uptime . 27
Using Addons . 11
Using I2C to communicate with an EEPROM 13
Using SPI to communicate with a

mcp3002 10 bit ADC . 14

V
validatePin . 27
Verify octave can see the addon 11
version . 27

W
warranty . 46
write . 30, 36
writeDigitalPin . 28
writePosition . 34
writePWMDutyCycle . 28
writePWMVoltage . 28
writeRead . 38
writeRegister . 31

	Installing and loading
	Online Direct install
	Off-line install
	Loading

	Hardware setup
	Programming the Arduino
	Known Arduino Board Types

	Connecting to an arduino
	Connecting to a single arduino
	Connecting to a specific arduino
	Querying available arduinos

	Basic Input and Output Overview
	Performing Digital I/O
	Performing Analog Input

	Protocol based I/O Overview
	SPI communication
	I2C communication
	Servo communication
	Shift Registers
	Rotary Encoders

	Addons Overview
	Addon Introduction
	Creating an addon
	Addon package directory
	Addon package .m file
	Addon package header file
	Verify octave can see the addon

	Using addons
	Programing the arduino with the addon
	Creating a addon object

	Examples
	Blinking an LED
	Using I2C to communicate with an EEPROM
	Using SPI to communicate with a mcp3002 10 bit ADC

	Function Reference
	General Functions
	arduinosetup
	isarduino
	listArduinoLibraries
	scanForArduinos

	Arduino Functions
	@arduino/arduino
	@arduino/configurePin
	@arduino/configurePinResource
	@arduino/decrementResourceCount
	@arduino/display
	@arduino/getI2CTerminals
	@arduino/getLEDTerminals
	@arduino/getMCU
	@arduino/getPWMTerminals
	@arduino/getPinInfo
	@arduino/getPinsFromTerminals
	@arduino/getResourceCount
	@arduino/getResourceOwner
	@arduino/getSPITerminals
	@arduino/getServoTerminals
	@arduino/getSharedResourceProperty
	@arduino/getTerminalMode
	@arduino/getTerminalsFromPins
	@arduino/incrementResourceCount
	@arduino/isTerminalAnalog
	@arduino/isTerminalDigital
	@arduino/playTone
	@arduino/readAnalogPin
	@arduino/readDigitalPin
	@arduino/readVoltage
	@arduino/reset
	@arduino/sendCommand
	@arduino/setSharedResourceProperty
	@arduino/uptime
	@arduino/validatePin
	@arduino/version
	@arduino/writeDigitalPin
	@arduino/writePWMDutyCycle
	@arduino/writePWMVoltage

	Arduino I2C Functions
	@i2cdev/display
	@i2cdev/i2cdev
	@i2cdev/read
	@i2cdev/readRegister
	@i2cdev/subsref
	@i2cdev/write
	@i2cdev/writeRegister
	scanI2Cbus

	Arduino Rotary Encoder Functions
	@rotaryEncoder/display
	@rotaryEncoder/readCount
	@rotaryEncoder/readSpeed
	@rotaryEncoder/resetCount
	@rotaryEncoder/rotaryEncoder
	@rotaryEncoder/subsref

	Arduino Servo Functions
	@servo/display
	@servo/readPosition
	@servo/servo
	@servo/subsref
	@servo/writePosition

	Arduino Shiftregister Functions
	@shiftRegister/display
	@shiftRegister/read
	@shiftRegister/reset
	@shiftRegister/shiftRegister
	@shiftRegister/subsref
	@shiftRegister/write

	Arduino SPI Functions
	@spidev/display
	@spidev/spidev
	@spidev/subsref
	@spidev/writeRead

	Arduino Addons
	addon
	arduinoioaddons.EEPRomAddon.EEPRom
	arduinoioaddons.ExampleAddon.Echo
	arduinoioaddons.ExampleLCD.LCD
	arduinoioaddons.RTCAddon.DS1307

	Arduino I/O package
	arduinoio.AddonBase
	arduinoio.FilePath
	arduinoio.LibFiles
	arduinoio.LibraryBase
	arduinoio.getBoardConfig

	GNU General Public License
	Index

